

IHEP Diffractive group

Elastic π+p and π+π+ scattering at LHC R.Ryutin, A.Sobol, V.Petrov, IHEP

FWD meeting

September 2009

Forward Physics

Plan

1.Motivations. Elastic π +p and π + π + cross-sections. Extraction procedure. Absorption.

2. History.

3. Signal and Backgrounds. Crosssections.

4. Estimations on the generator level.

5. Conclusion

Motivations

Motivations

Single pion (charge) exchange (CE)

Double pion (charge) exchange (DCE)

Motivations (extraction of cross-sections)

$$F_0(\xi, t) = \frac{G_{\pi^+ pn}^2}{16\pi^2} \frac{-t}{(t - m_{\pi}^2)^2} e^{2bt} \xi^{1 - 2\alpha_{\pi}(t)}$$

$$-t \simeq \frac{\vec{q}^{\,2} + m_p^2 \xi^2}{1 - \xi}, \ G_{\pi^+ pn}^2 / (8\pi) = 13.75$$

$$\alpha_{\pi}(t) \simeq 0.9(t - m_{\pi}^2), \ b \sim 0.3 \ \text{GeV}^{-2}$$

Model dependent \rightarrow independent extraction

$$\frac{d\sigma_{\pi^+\mathbf{p}}(\xi s)}{d\Phi_{\pi p}} = \frac{\frac{d\sigma_{CE}}{d\xi dt d\Phi_{\pi p}}}{F_0(\xi, t) \cdot S(s/s_0, \xi, t)} \to \left. \frac{\frac{d\sigma_{CE}}{d\xi dt d\Phi_{\pi p}}}{F_0(\xi, t)} \right|_{t \to m_\pi^2}$$

$$\frac{d\sigma_{m}}{d\Phi_{\pi\pi}} = \frac{\frac{d\sigma_{DCE}}{d\xi_1 d\xi_2 dt_1 dt_2 d\Phi_{\pi\pi}}}{F_0(\xi_1, t_1) F_0(\xi_2, t_2) \cdot S_2(s/s_0, \xi_{1,2}, t_{1,2})} \to \frac{\frac{d\sigma_{DCE}}{d\xi_1 d\xi_2 dt_1 dt_2 d\Phi_{\pi\pi}}}{F_0(\xi_1, t_1) F_0(\xi_2, t_2)} \bigg|_{t \to m_{\pi}^2}$$

History

Extracted $\sigma(\pi \pi)$ at low energies

[W.J. Robertson, W.D. Walker, J.L. Davis, Phys. Rev. D7 (1973) 2554]

 $\pi \pi$ cross-sections in mb

Cross-sections

CE and DCE cross sections, corresponding to elastic π +p and π +\pi+ scattering at 10 TeV for the BSW parametrization [C. Bourrely, J. Soffer, T.T. Wu, Eur. Phys. J. C 28 (2003) 97] in the region: |qt| < 0.5 GeV, $0 < \xi < max(\xi)$

max(ξ)	0.05	0.1	0.2	0.3
σ(sce), μb	8.6	38	130	213
σ(dce), µb	0.01	0.3	4.8	15.5

Signal and Backgrounds for CE

b) low mass SD

Double Dissociation

f) minimum bias,a)-e) excluded

At $\sqrt{s} = 10$ TeV total pp cross section is equal to $\sigma_{pp}^{tot} = 96.1$ mb (PYTHIA 6.420)

 $pp \rightarrow pp \qquad \sigma_{pp}^{ES} = 19.6 \text{ mb}$ Elastic Scattering (ES) :

Minimum Bias (MB): $pp \to X$ $\sigma_{pp}^{MB} = 50 \text{ mb}$ Single Diffraction (SD): $pp \to pX$ $\sigma_{yp}^{SD} = 14 \text{ mb}$ Double Diffraction (DD): $pp \to XY$ $\sigma_{pp}^{DD} = 9.7 \text{ mb}$

Single Charge Exchange (SCE or $S\pi E$):

 $pp \rightarrow nX$

 $\sigma_{pp}^{SCE}=2.6~{\rm mb}$ at $\xi_{\rm n}<0.4$

Double Charge Exchange (DCE or $D\pi E$) : $pp \rightarrow nXn$

$$\sigma_{pp}^{DCE} = 0.2 \text{ mb at } \xi_{n} < 0.4$$

V.A. Petrov, R.A. Ryutin, A.E. Sobol, LHC as πp and $\pi \pi$ Collider, Jun 2009 arXiv:0906.5309 [hep-ph], to be published in EPJ.

At $\sqrt{s} = 10$ TeV SCE cross section is equal $\sigma_{SCE}^{tot} \sim 2.6$ mb at $\xi_n < 0.4$ (Petrov, Ryutin)

225 $\text{DCE}_{\text{ES}}: pp \to n \ \pi^+\pi^+ \ n$ 200 DCE р n 175 π + 150 $\mathrm{DCE}_{\mathrm{ES}}$ 125 π + π+ π+ 100 ி 75 n р 50 $\sigma_{DCE}^{ES} \sim 24 \ \mu b$ 25 0 ⁴⁰⁰⁰M, GeV 2500 3000 3500 $DCE_{SD}: pp \to n \pi^+ X n$ $DCE_{MB}: pp \rightarrow nXn$ р n р n $\sigma_{DCE}^{SD} \sim 30 \ \mu b$ π + π π+ π+ Χ **π**+ $\sigma_{DCE}^{MB} \sim 124~\mu{\rm b}$ n р n р $DCE_{DD}: pp \rightarrow nXYn$ р n π + π + $\sigma_{DCE}^{DD} \sim 22 \ \mu b$ n p

At $\sqrt{s} = 10$ TeV DCE cross section is equal $\sigma_{DCE}^{tot} \sim 200 \ \mu b$ at $\xi_n < 0.4$ (Petrov, Ryutin)

 $\pi^+ p$ elastic scattering selection

 $\pi^+\pi^+$ elastic scattering selection

Some conclusions

- SCE (pp-> nX) and DCE (pp -> nXn) processes measured at LHC could provide us with unique information of π+p and π+π+ elastic cross sections at very high c.m. energy (up to several TeV)
- cross-sections for SCE and DCE with π +p and π + π + scattered elastically are estimated at 10 TeV:

σ (pp -> n π+p) ~ 360 μb at ξ <0.4 **σ** (pp -> n π+π+ n) ~ 24 μb at ξ <0.4

- generator for such event simulation is developed and included to EDDE v.3
- on the generator level we have studied possible background for CE and DCE
- Information from all CMS Calorimeters and t of the leading neutron, measured by ZDC, could be used for effective background suppression
- Extraction of π + p and π + π + elastic cross-sections is possible with t of neutrons measurement by ZDC. Uncertainties: absorption can benormalized to pp, tends to 1 at t~0.

Hard π +p (pp \rightarrow n jet jet X) and π + π + (pp \rightarrow n jet jet X n) interaction

gives access to a

•parton distributions in a pion in a still unexplored domain of Q² and x

•possible extraction of effective strangeness, charm, and beauty content of the pion
•study of the d-u asymmetry in the pion

Measurement of t neutron with ZDC

ATLAS ZDC Back view Side view At 140 m for 5 TeV neutron t ~ 0.128 R^2: t < 0.3 =>R<1.5 cm Central cell (2x10 cm) of EM ZDC: t<1.2 GeV-2 2 MA D.M R9000.03.16 Spatial Resolution, mm Detector Slot PMTXP32929 Phototubes Class mirro 2 at liaheolo Light Guides Quartz-Quartz **EM** Section Fibers imm quara bary rodi Neutron Energy, TeV CMS ZDC Bear H Section **Tungsten Plates** Fiber Ribbons

We suggest to change fiber layers by THGEM plates

12 August 2009

13th Annual RDMS CMS Collaboration Conference