

Protvino Diffractive group

V. Petrov, R. Ryutin, A. Godizov, A.Sobol, V. Samoilenko, I. Azhgirey, A. Kuznetsov

Leading neutron measurements at 0.9, 2.36 and 10 TeV

What could we extract from data

Speakers: R. Ryutin, A. Sobol

9 December 2009

FWD PAG Meeting

CMS week, CERN

Motivations

Extracted $\sigma(\pi p)$ versus parametrization for real data from Particle Data Group

Experiment	$\sqrt{\mathbf{s}}$	σ(ext.)	σ(PDG)	
NA49	9.4	21.4±2.3	23.2	
	10.8	21.4±2.3	23.19	
S	15.9	22.8±1.9	23.55	
لد	18.7	21.4±1.6	23.85	
	22.2	23.2±1.5	24.27	
HERA	50	31±3.6	27.43	
PHENIX	70	25.9±4.5	29.3	

Extracted $\sigma(\pi \pi)$ at low energies

[W.J. Robertson, W.D. Walker, J.L. Davis, Phys. Rev. D7 (1973) 2554]

[H.Abramowicz et al., Nucl. Phys., B166, (1980), 62]

Model dependent extraction

ξ=0.1 M(CE) ~ 3 TeV M(DCE) ~ 1 TeV

$$F_{0}(\xi,t) = \frac{G_{\pi^{+}pn}^{2}}{16\pi^{2}} \frac{-t}{(t-m_{\pi}^{2})^{2}} e^{2bt} \xi^{1-2\alpha_{\pi}(t)}$$
$$-t \simeq \frac{\vec{q}^{2} + m_{p}^{2} \xi^{2}}{1-\xi}, \ G_{\pi^{+}pn}^{2}/(8\pi) = 13.75$$
$$\alpha_{\pi}(t) \simeq 0.9(t-m_{\pi}^{2}), \ b \sim 0.3 \text{ GeV}^{-2}$$
$$\sigma_{\pi^{+}p}(\xi s) = \frac{\frac{d\sigma_{SCE}}{d\xi}}{\int_{t_{max}}^{t_{max}} dt F_{0}(\xi,t) S(s/s_{0},\xi,t)}$$

Theoretical error < 10% !

Model for S: [V. Petrov, A. Prokudin, EPJC 23 (2002) 135]

Model dependent extraction

CE cross-section integrated in the interval 0<pt<0.11 (1-ξ)

Extracted pion-proton cross-section 25.9 +/- 4.5 mb at sqrt(s)=70 GeV

Parametrizations give 27.3 ÷29.3 mb

Different models give total pp cross-sections at sqrt(s)=10 TeV 95÷105 mb (theoretical uncertainty)

CE and DCE study at 10 TeV

CE and DCE at 900 GeV	Process	CE	DCE	SD	DD	MB	Elastic	Total
	σ , mb	1.76	0.14	11.7	6.4	32.5	12.8	65.3

Conclusion: at 900 GeV we have good chances to get

~10^7 CE and ~ 10^6 DCE events at 1 pb^-1

using information from ZDC and CMS Calorimeters only. Total $\pi\pi$ and πp cross sections can be extracted from this data by model-dependent methods in the mass region

200-600 GeV for $\pi p\,$ and 50-300 GeV for $\pi \pi$

CE and DCE study at 2.36 TeV

Process	CE	DCE	SD	DD	MB	Elastic	Total
σ , mb	2.1	0.16	12.7	7.7	37.9	15.6	76.2

Conclusion: at 900 GeV we have good chances to get ~6x10^7 CE and ~ 2x10^7 DCE events at 1 pb^-1

using information from ZDC and CMS Calorimeters only. Total $\pi\pi$ and πp cross sections can be extracted from this data by model-dependent methods in the mass region

400-1500 GeV for πp and 100-1000 GeV for $\pi \pi$

ππ and πp mass at different √s

√s, GeV	πp mass, GeV	ππ mass, GeV
900	200 - 600	50 - 300
2360	400 - 1500	100 - 1000
10000	1000 - 6000	500 - 4000

 \checkmark CE and DCE processes measured at LHC could provide us with unique data of π +p and π + π + cross sections at very high c.m. energy (up to several TeV)

✓ With the information from ZDC and CMS CALO we could trigger signal and suppress background for CE and DCE events effectively

✓ Data from 3 LHC energies cover wide mass interval. Using model-dependent methods we could extract total cross sections

for π +p in the mass region 200-6000 GeV and for π + π + in the mass region 50-4000 GeV

 $\sqrt[]{\pi\pi}$ total cs extracted from 900 GeV data are placed in the mass interval 50 – 300 GeV, where we have cs obtained from the real exp. data. We have real possibility to compare results