Institute for High Energy Physics (IHEP), Protvino, Russia

Exclusive Double Diffractive Events at LHC.

Roman Ryutin

On behalf of the IHEP Study Group on Elastic and Diffractive Scattering at LHC: Godizov A.A., Petrov V.A., Prokudin A.V., Ryutin R.A., Sobol A.E., Troshin S.M. and Tyurin N.E.

Contents

- $_{\mathbb{F}}$ Physical motivations for the EDDE.
- F Process. Kinematics. Corrections.
- F Results for the St. Model Higgs.
- F RS1 model. Results.
- $_{\mathbf{F}}$ Other processes in the EDDE.
- F Low mass particles. Spin-parity analyser.
- F Plans.

Motivations

- F Clear signature. Two rapidity gaps with final protons and two jets $(M_X > 100 \text{ GeV})$.
- F It is possible to reconstruct the event exactly by measurements of final protons. "Missing mass" method can improve much the accuracy of the central mass measurements.
- **F** Background is strongly suppressed.
- ${\ensuremath{\,{\scriptscriptstyle\rm F}}}$ Spin-Parity analysis of the central particle is possible.
- $_{\rm F}$ Measurements of the diffractive pattern of the interaction in the presence of the "hard" scale.

Roman Ryutin

EDDE. $p + p \rightarrow p + X + p$.

Absorbtive corrections $T_X^{Unitarized}(p_1 , p_2 , \Delta_1 , \Delta_2) = \frac{1}{16ss'} \int \frac{d^2 \mathbf{q_T}}{(2\pi)^2} \frac{d^2 \mathbf{q'_T}}{(2\pi)^2} V(s , \mathbf{q_T}) \times$ $\times T_X(p_1 - q_T, p_2 + q_T, \Delta_{1T}, \Delta_{2T}) \times V(s', \mathbf{q'_T}),$ $\Delta_{1T} = \Delta_1 - q_T - q'_T, \ \Delta_{2T} = \Delta_2 + q_T + q'_T,$ $V(s, \mathbf{q_T}) = 4s(2\pi)^2 \delta^2(\mathbf{q_T}) + 4s \int d\mathbf{b} e^{i\mathbf{q_T}\mathbf{b}} \left[e^{i\delta} - 1\right]$ Eikonal function δ can be found in [hep-ph/0105209] All the available data on $p + p(\bar{p}) \rightarrow p + p(\bar{p})$ are well described.

St. Model Higgs. Results.

Total cross-section for the process $p + p \rightarrow p + H + p$ (in fb).

Normalized to $\gamma + p \rightarrow J/\Psi + p$ data from HERA. Without Sudakov-like suppression. Total cross-section for the process $p + p \rightarrow p + H + p$ (in fb).

Normalized to the data from CDF on $p+p \rightarrow p+jet+jet+p$. Sudakovlike suppression is taken into account.[hep-ph/0311024]

- F Integrated luminocity 30 fb^{-1}
- F $E_{T,jet} > 50 \ GeV \ (\sim 50\% \ of signal events)$
- F b-tagging 50%
- F efficiency of final protons registration $\sim 50\%$ ($M_H = 115$ GeV)
- F mass resolution (if "missing mass" method is applied!) $\sim 1\%$

total efficiency is about 10 % Significance estimations

$$\frac{N_S}{\sqrt{N_S + N_B}} \simeq 3.5$$

RS1 model. Results.

Total cross-section for the process $p + p \rightarrow p + h^* + p$ (in fb).

 h^* and r^* are observable mass eigenstates.

Total cross-section for the process $p + p \rightarrow p + r^* + p$ (in fb).

 Λ_{ϕ} is the vacuum expect. value of the radion field and ξ is the mixing parameter.[hep-ph/0002178] Estimations for the significance of higgs and radion production at LHC (for the integrated luminocity 30 fb^{-1}):

$$M(h) = 150 \text{ GeV}, \Lambda_{\phi} = 1 \text{ TeV}$$

 $\mathcal{E} = 1/6$

$M(h^*)$	Signif.	$M(r^*)$	Signif.	
${ m GeV}$		${ m GeV}$		
$115 \rightarrow 138$	$4.7 \rightarrow 4 \sigma$	$60 \rightarrow 100$	$4 \rightarrow 4.5 \sigma$	
$138 \rightarrow 147$	$4 \rightarrow 3 \ \sigma$	$200 \rightarrow 250$	$\sim 3 \; \sigma$	

$$\xi = -1/6$$

$M(h^*)$	Signif.	
${ m GeV}$		
$155 \rightarrow 165$	$> 5 \sigma$	
$M(r^*)$		
${ m GeV}$		
$170 \rightarrow 210$	$> 5 \sigma$	
$210 \rightarrow 245$	$5 \rightarrow 4 \sigma$	
$245 \rightarrow 300$	$4 \rightarrow 3 \sigma$	

Other processes.

Estimations of the total cross-sections for $p + p \rightarrow p + X + p$ processes. Kinematical cuts:

 $M_X^2/s < \xi_i < 0.1$, $0.01 < |t_i| < 1 \ GeV^2$

$$\begin{split} X &= jet + jet \\ E_T > 10 \text{ GeV}, \ \sigma_{tot} \simeq 5 \text{ nb} \\ E_T > 25 \text{ GeV}, \ \sigma_{tot} \simeq 100 \text{ pb} \\ E_T > 50 \text{ GeV}, \ \sigma_{tot} \simeq 6 \text{ pb} \\ X &= \chi_{c0} \\ \sigma_{tot} \simeq 6.3 \text{ pb} \\ X &= \chi_{b0} \\ \sigma_{tot} \simeq 160 \text{ fb} \\ \text{Low luminocity measurements are possible} \end{split}$$

Low mass particles. S.-P. analyser.

Results of the WA102 experiment. 0^{++} and 2^{++} sectors.

 ϕ distributions for the a) $f_0(1370)$, b) $f_0(1500)$, c) $f_2(1270)$ and d) $f_2(1950)$.

$$dP_t^2 = (\sqrt{|t_1|} - \sqrt{|t_2|})^2 + 4\sqrt{t_1 t_2} \sin^2 \frac{\phi}{2}$$

 ϕ is the azimuthal angle between outgoing protons.

$$\frac{d\sigma}{d\phi} \sim \left(1 + \frac{\sqrt{t_1 t_2}}{A} \cos\phi\right)^2 \ [F.Close]$$

 $\begin{array}{l} f_0(1370): \ A = -0.5 \ GeV^2, \\ f_2(1270): \ A = -0.4 \ GeV^2, \\ f_0(1500) \ , f_2(1950): \ A = 0.7 \ GeV^2 \ (\text{glueball candidates}) \\ dP_t \ < \ 0.2 \ GeV \ - \ \text{glueballs survive}, \ q\bar{q} \\ \text{states are suppressed.} \end{array}$

 dP_t is the natural theoretical variable.

Low mass particles. S.-P. analyser.

Absorbtive corrections (unitarization) affect the ϕ distribution $d\sigma/d\phi/\sigma$.

 $|t_i| < 0.3 \ GeV^2$. $\phi \sim 0 \rightarrow \text{small } dP_t$

 $|t_i| > 0.8 \ GeV^2. \ \phi \sim \pi \rightarrow \text{large } dP_t$

- F glueballs have large crosssections for observations at rather low luminocities, when we can measure ϕ -distributions. Spin-parity analysis is possible (as in WA102 experiment).
- F dP_t filter for glueballs.
- F ϕ -distributions is a very powerful tool to separate different models for soft diffraction.

Plans for the nearest future.

- **F** Cross-sections for the EDD-production of other possible states in the St. model and beyond.
- ${\ensuremath{\scriptscriptstyle\rm F}}$ Generators for the considered processes and backgrounds.

All the information will be available on

http://sirius.ihep.su/~ryutin/diff.html