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1. Introduction

Since the early time the process of the exclusive production of central systems of particles

with quasi-diffractively scattered initial particles was considered as an important source of

the information about the high-energy dynamics of strong interactions both in theory and

experiment.

If one takes only one particle produced, this is the first “genuinely” inelastic process

which not only retains a lot of features of the elastic scattering but also shows clearly how

the initial energy is being transformed into the secondary particles. General properties of

such amplitudes were considered in reference [1].

The theoretical consideration of these processes on the basis of Regge theory goes back

to [2]. Some new interest was related to the possibly good signals of centrally produced

Higgs bosons and heavy quarkonia [3].

As Pomerons are the driving force of the processes in question it is natural to expect

that the glueball production will be favored, if one knows that Pomerons are mostly gluonic

objects [4]. The central glueball production was suggested as the possible origin of the total

cross section rise [5]. One of the early proposal for experimental investigations of centrally

produced glueballs in EDDE was made in [6].

As to the most recent experimental results one has to mention the experiment WA102

[7]–[9].

It was proposed [10] that the process of single-particle diffractive production can be

used as a filter to separate qq̄-states from glueballs due to a special dependence on the

azimuthal angle.
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In this paper we study the process of single particle production in double diffractive

events in the framework of Regge picture (based on Lorentz tensor reggeized exchanges)

taking into account the absorption effects both in the initial and the final states. With

parameters fixed from the fit to the WA102 data we give some predictions for the production

of various JPC states at the LHC. The main conclusion from WA102 that qq̄-states and

glueballs have distinct φ-dependence (taking into account their possible mixing) remains

true, in our approach, for the LHC energy, though the functional form of the φ-distributions

changes due to significant absorption effects.

2. EDDE kinematics and cross-sections

Here we consider the process p + p → p + X + p, where X is a particle or a system of

particles, spin and parity of which are fixed. In the kinematics which corresponds to the

double Regge limit (see figure 1) the light-cone representation (+,−;⊥) for momenta of

colliding and scattered particles is the following:

p1 =

(√
s

2
,
m2

√
2s
,0

)

p2 =

(
m2

√
2s
,

√
s

2
,0

)

p′1 =

(
(1− ξ1)

√
s

2
,

∆2
1 +m2

(1− ξ1)
√

2s
,−∆1

)

p′2 =

(
∆2

2 +m2

(1− ξ2)
√

2s
, (1− ξ2)

√
s

2
,−∆2

)
. (2.1)

ξ1,2 are the fractions of the momenta of protons carried by reggeons. Characters printed

in bold are used for two-dimensional vectors. From the above notations we can obtain the

relations:

t1,2 = ∆2
1,2 ' −

∆2
1,2(1 + ξ1,2) + ξ2

1,2m
2

1− ξ1,2
' −∆2

1,2 , ξ1,2 → 0

cosφ0 =
∆1∆2

|∆1||∆2|
M2
⊥ = ξ1ξ2s 'M2

X + |t1|+ |t2|+ 2
√
t1t2 cosφ0 , 0 ≤ φ0 ≤ π

(p1 + ∆2)2 = s1 ' ξ2s

(p2 + ∆1)2 = s2 ' ξ1s

s1s2 = sM2
⊥ (2.2)

The physical region of double diffractive events is defined by the following kinematical cuts:

0.01 GeV2 ≤ |t1,2| ≤ 1 GeV2 , (2.3)

ξmin '
M2
X

sξmax
≤ ξ1,2 leξmax = 0.1 . (2.4)
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Figure 1: The process p + p → p + X + p.

The absorption in the initial and final pp-

channels is not shown.

Figure 2: The full unitarization of the pro-

cess p+ p→ p+X + p.

The discussion on the choice of cuts (2.3), (2.4) for diffractive events and references to

other authors were given in [11, 12]. We can write the relations in terms of y1,2 and yX
(respectively rapidities of the hadrons and of the system X). For instance:

ξ1,2 '
MX√
s
e±yX ,

|yX | ≤ y0 = ln

(√
sξmax

MX

)
,

|y1,2| =
1

2
ln

(1− ξ1,2)2s

m2 − t1,2
≥ 9 . (2.5)

The cross-section of this process can be written as

dσ

dt1dt2dφ0dyX
'
π|TUnit.

pp→pXp|2
8s2(2π)5

, (2.6)

where TUnit.
pp→pXp is the amplitude of the process, which can be calculated from the “bare”

amplitude of figure 1 by the unitarization procedure depicted in figure 2, where

TX = Tpp→pXp ,

V (s,qT ) = 4s(2π)2δ2(qT ) + 4s

∫
d2beiqTb

[
eiδpp→pp − 1

]
,

TUnit.
X (p1, p2,∆1,∆2) =

1

16ss′

∫
d2qT
(2π)2

d2q′T
(2π)2

V (s,qT )TX(p1 − qT , p2 + qT ,∆1T ,∆2T ) ·

·V (s′ , q′T ) ,

∆1T = ∆1 − qT − q′T ,
∆2T = ∆2 + qT + q′T , (2.7)

and δpp→pp can be found in [13]. V represents “soft” rescattering effects for the initial and

final states, i.e. multi-Pomeron exchanges. These “outer” unitarity corrections can reduce

the integrated cross-section. It depends on the kinematical cuts and the nature of the

produced system X.

– 3 –



J
H
E
P
0
6
(
2
0
0
5
)
0
0
7

3. Calculation of the “bare” amplitude

In order to calculate peculiar momentum transfers and the azimuthal angle dependence we

use the amplitudes with meson exchanges of arbitrary spins with subsequent reggeization.

Basic elements of such approach are the vertex functions

T µ1...µJ (p,∆) = 〈p−∆|Iµ1...µJ |p〉 (3.1)

and

F
µ1 ...µJ1

,ν1...νJ2
α1 ...αJ (∆1,∆2, pX) =

∫
d4x d4ye−i∆1x−i∆2y ·

·〈0|T ∗Iµ1 ...µJ1 (x) Iν1...νJ1 (y) Iα1...αJ (0) |0〉 , (3.2)

where Iµ1 ...µJ is the current operator related to the hadronic spin-J field operator,

(
¤+m2

J

)
Φµ1...µJ (x) = Iµ1...µJ (x) . (3.3)

The amplitude Tpp→pXp (fig. 1) is built with vertices T µ1···µJ1 , T ν1···νJ2 , F
µ1...µJ1

, ν1···νJ2
α1 ···αJ

and the propagators d(J, t)/(m2(J)− t) which have the poles at

m2(J)− t = 0 , i.e. J = α(t) , (3.4)

after an appropriate analytic continuation of the signatured amplitudes in J . We assume

that these poles, where α is the Pomeron trajectory, give the dominant contribution at

high energies after having taken the corresponding residues. Regge-cuts are generated by

the unitarization.

For vertex functions T1,2 we can obtain the following tensor decomposition:

T µ1...µJ (p,∆) = T0(∆2)

[ J2 ]∑

n=0

Y n
J T µ1...µJ

00J, n , (3.5)

Y n
J =

2n(2(J − n))!J !D2n
p

(J − n)!(2J)!
(3.6)

D µ
p = 2pµ −∆µ , D2

p = 4m2 −∆2 , (3.7)

that satisfies Rarita-Schwinger conditions:

T µ1...µi...µj ...µJ = T µ1...µj ...µi...µJ (3.8)

∆µiT
µ1...µi...µJ = 0 (3.9)

gµiµjT
µ1...µi...µj ...µJ = 0 (3.10)

Tensor structures T µ1...µJ
00J, n satisfy only two conditions (3.8),(3.9) and consist of the elements

Dµ
p and Gµν :

Gµν = −gµν +
∆µ∆ν

∆2
. (3.11)

T µ1...µJ
00J, n = D (µ1

p · · ·DµJ−2n
p GµJ−2n+1µJ−2n+2 · · ·GµJ−1µJ ) (3.12)
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Let us assume the fusion of two particles with spins J1 and J2 into a particle with

spin J . The general structure F
µ1...µJ1

, ν1...νJ2
α1...αJ (∆1,∆2, pX) (see figure 1) should satisfy the

conditions (3.8–3.10) on each group of indices. Since the contraction of the vertex with

structures T µ1...µJ1 (p1,∆1), T ν1...νJ2 (p2,∆2) and polarization tensor eα1...αJ (pX) of the X

particle leads to vanishing of some terms in F , the remainder can be constructed from

pµiX , p
νj
X , ∆αk

1 (or ∆αk
2 ), gµiνj , gµiαk , gνjαk (3.13)

for tensors and additional terms

Λ
µiνjαk
X = pρXε

ρµiνjαk , (3.14)

Λ
µiνjαk
n = ∆ρ

nε
ρµiνjαk , (3.15)

Qλκn = ∆ρ
np

σ
Xε

ρσλκ → ∆ρ
1∆σ

2 ε
ρσλκ , (3.16)

n = 1 or 2 , (λκ) = (µiνj) , (µiαk) , (νjαk)

i ≤ J1 , j ≤ J2 , k ≤ J
for pseudo-tensors [14]. Let J1 ≤ J2, and let us consider several cases.

• JP = 0+

F µ1...µJ1
,ν1...νJ2 (∆1,∆2, pX) =

J1∑

k=0

fk

(
pµ1

X · . . . · p
µJ1−k
X · gµJ1−k+1νJ2−k+1 · . . . · gµJ1

νJ2 ·

· pνJ2−k
X · . . . · pν1

X

)
. (3.17)

After the tensor contraction we obtain the expansion of the type
[
Ji
2

]

∑

n=0

(−1)nCnJiC
2n
Ji

C2n
2Ji



√
ξ2
i (m2 − ti/4)

−ti
M2
X − t1 − t2
M2
⊥




2n

. (3.18)

In the kinematical region (2.3),(2.4) ξ2
im

2/|ti| ¿ 1 and we can keep only the first

term of the expansion (3.18). The tensor product is given by

T J1(p1,∆1)⊗ F J1, J2, 0+
(∆1,∆2)⊗ T J2(p2,∆2) ∼ sJ1

1 s
J2
2

J1∑

k=0

fk2
k

M2k
⊥
. (3.19)

• JP = 0−

F µ1...µJ1
, ν1...νJ2 (∆1,∆2, pX) = Qµ1ν1

n

J1−1∑

k=0

fk

(
pµ2

X · . . . · p
µJ1−k
X ·

· gµJ1−k+1νJ2−k+1 · . . . · gµJ1
νJ2 ·

· pνJ2−k
X · . . . · pν2

X

)
, (3.20)

T J1(p1,∆1)⊗ F J1, J2, 0−(∆1,∆2) ⊗

⊗T J2(p2,∆2) ∼ 4Qµ1ν1
n pµ1

1 pν1
2 s

J1−1
1 sJ2−1

2

J1−1∑

k=0

fk2
k

M2k
⊥

' [∆1 ×∆2] · sJ1
1 s

J2
2

J1−1∑

k=0

fk2
k+1

M2k+2
⊥

(3.21)
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• JP = 1−

F µ1...µJ1
, ν1...νJ2

, α(∆1,∆2, pX) = gαµ1

J1−1∑

k=0

fk

(
pµ2

X · . . . · p
µJ1−k
X ·

· gµJ1−k+1νJ2−k+1 · . . . · gµJ1
νJ2 ·

· pνJ2−k
X · . . . · pν1

X

)
+

+gαν1

J1∑

k=0

fJ1+k

(
pµ1

X · . . . · p
µJ1−k
X ·

· gµJ1−k+1νJ2−k+1 · . . . · gµJ1
νJ2 ·

· pνJ2−k
X · . . . · pν2

X

)
+

+∆α
n

J1∑

k=0

f2J1+k+1

(
pµ1

X · . . . · p
µJ1−k
X ·

· gµJ1−k+1νJ2−k+1 · . . . ·
· gµJ1

νJ2 ·
· pνJ2−k
X · . . . · pν1

X

)
, (3.22)

T J1(p1,∆1)⊗ F J1, J2, 1−(∆1,∆2) ⊗

⊗T J2(p2,∆2) ∼ sJ1
1 s

J2
2

[
2pα1
s1

J1−1∑

k=0

fk2
k

M2k
⊥

+
2pα2
s2

J1∑

k=0

fJ1+k2
k

M2k
⊥

+

+ ∆α
n

J1∑

k=0

f2J1+1+k2k

M2k
⊥

]
. (3.23)

It is easy to show from the general form of the tensor decompositions, that after the

reggeization procedure one obtains the structure of the amplitude, which is similar

to the special case J1 = J2 = 1. In this case it is convenient to use the following

bose-symmetric form of the tensor

F µν, α(∆1,∆2, pX) = f0g
αµ∆ν

1 + f̄0g
αν∆µ

2 +
(
f1∆α

1 + f̄1∆α
2

)
∆µ

2∆ν
1 +

+
(
f2∆α

1 + f̄2∆α
2

)
gµν , (3.24)

and the tensor product

T J1(p1,∆1) ⊗ F J1, J2, 1−(∆1,∆2)⊗

⊗ T J2(p2,∆2) ∼ sJ1
1 s

J2
2

[
2pα1
s1

f0 +
2pα2
s2

f̄0 +

(
f1 +

f2

M2
⊥

)
∆α

1 +

+

(
f̄1 +

f̄2

M2
⊥

)
∆α

2

]
, (3.25)

where f̄(t1, t2) = f(t2, t1).
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• JP = 1+

F µ1...µJ1
,ν1...νJ2

,α(∆1,∆2, pX) = Λµ1ν1α
X

J1−1∑

k=0

fk

(
pµ2

X · . . . · p
µJ1−k
X ·

· gµJ1−k+1νJ2−k+1 · . . . · gµJ1
νJ2 ·

· pνJ2−k
X · . . . · pν2

X

)
+

+Λµ1ν1α
n

J1−1∑

k=0

fJ1+k

(
pµ2

X · . . . · p
µJ1−k
X ·

· gµJ1−k+1νJ2−k+1 · . . . ·
· gµJ1

νJ2 ·
· pνJ2−k
X · . . . · pν2

X

)
+

+Qν1α
n f2J1

(
gµ1ν2 · . . . · gµJ1

νJ1+1 ·

· pνJ1+2

X · . . . · pνJ2
X

)
+

+Qµ1α
n

J1−1∑

k=0

f2J1+k+1

(
pµ2

X · . . . · p
µJ1−k
X ·

· gµJ1−k+1νJ2−k+1 · . . . ·
· gµJ1

νJ2 ·
· pνJ2−k
X · . . . · pν1

X

)
, (3.26)

T J1(p1,∆1)⊗ F J1, J2, 1+
(∆1,∆2) ⊗

⊗T J2(p2,∆2) ∼ sJ1
1 s

J2
2

[
2pµ1

1 pν1
2 p

ρ
Xε

ραµ1ν1

s

J1−1∑

k=0

fk2
k+1

M2k+2
⊥

+

+
2pµ1

1 pν1
2 ∆ρ

nεραµ1ν1

s

J1−1∑

k=0

fJ1+k2
k+1

M2k+2
⊥

+

+
2pν1

2 p
ρ
X∆σ

nε
ρσαν1

s2

f2J12J1

M2J1
⊥

+ (3.27)

+
2pµ1

1 pρX∆σ
nε
ρσαµ1

s1

J1−1∑

k=0

f2J1+1+k2k

M2k
⊥

]
.

For J1 = J2 = 1

T J1(p1,∆1)⊗ F J1,J2,1+
(∆1,∆2) ⊗

⊗T J2(p2,∆2) ∼ sJ1
1 s

J2
2

[
4pσ1p

λ
2

(
f0∆ρ

1 − f̄0∆ρ
2

)

sM2
⊥

+

+ 2∆ρ
1∆σ

2

(
f1p

λ
1

s1
− f̄1p

λ
2

s2

)]
ερσλα =

= 2sJ1
1 s

J2
2

[
pλ1P

ρ
2 ∆σ

1 + pλ2P
ρ
1 ∆σ

2

]
ερσλα , (3.28)
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P1 = − f̄1

s2
∆1 +

f̄0

sM2
⊥

2p1 ,

P2 = −f1

s1
∆2 +

f0

sM2
⊥

2p2 . (3.29)

• JP = 2+. For simplicity we consider only the case J1 = J2 = 1.

F µν,α1α2(∆1,∆2, pX) = f0g
α1µgα2ν + f1g

α1µ∆α2
1 ∆ν

1 +

+f̄1g
α1ν∆α2

2 ∆µ
2 +

+
(
f2∆α1

1 ∆α2
1 + f̄2∆α1

2 ∆α2
2

)
gµν +

+
(
f3∆α1

1 ∆α2
1 + f̄3∆α1

2 ∆α2
2

)
∆µ

2∆ν
1 , (3.30)

T J1(p1,∆1)⊗ F J1,J2,2+
(∆1,∆2) ⊗

⊗T J2(p2,∆2) ∼ sJ1
1 s

J2
2

[
f0

4pα1
1 pα2

2

sM2
⊥

+ f1
2pα1

1 ∆α2
1

s1
+

+ f̄1
2pα1

2 ∆α2
2

s2
+

+
2
(
f2∆α1

1 ∆α2
1 + f̄2∆α1

2 ∆α2
2

)

M2
⊥

+

+
(
f3∆α1

1 ∆α2
1 + f̄3∆α1

2 ∆α2
2

)
]
. (3.31)

Everywhere in the above expressions fk = fJ
P

k (t1, t2,M
2
X).

4. Azimuthal angle dependence

In this section we will obtain the general structure of the azimuthal angle dependence

for different JP states in the tensor current picture. If we assume that the dominant

contribution is given by the Regge poles α1(t1) and α2(t2) then the amplitude of the

process can be written in the following form

Tpp→pXp ∼ η(α1(t1))η(α2(t2))
[
T J1 ⊗ F J1, J2, JP ⊗ T J2

]
J1→α1
J2→α2

, (4.1)

where Ji → αi means the usual procedure of the analytical continuation to the complex

J -plane and taking residues at Regge poles. η(αi) are signature factors.

In the most important case, when the main contribution is given by one Pomeron

trajectory, α1 = α2 = αP(0) and the “bare” amplitude squared is proportional to following

expressions:

• JP = 0+

|Tpp→pXp|2 ∼ (M2
⊥)2(αP(0)−1)(f0M

2
⊥ + 2f1)2 (4.2)

• JP = 0−

|Tpp→pXp|2 ∼ (M2
⊥)2(αP(0)−1)f0t1t2 sin2 φ0 (4.3)

– 8 –
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• JP = 1−. In this case we assume the existence of a C-odd vacuum trajectory,

“Odderon”, αO(t).

|Tpp→pXp|2 ∼ (M2
⊥)αP(0)+αO(0)−2(F0M

4
⊥ + F1M

2
⊥ +F2) , (4.4)

F0 =
fS0

2

M2
X

+ fA0 f
A
1 +

(t1 − t2)fA1 f
S
0

M2
X

+
fA1

2
λ

4M2
X

,

F1 = fA0
2 − fS0

2 − fA0 fA2 +
(t1 − t2)fA2 f

S
0

M2
X

+
fA1 f

A
2 λ

2M2
X

,

F2 =
fA2

2
λ

4M2
X

, (4.5)

λ = λ(M2
X , t1, t2) = M4

X + t21 + t22 − 2M2
X t1 − 2M2

X t2 − 2t1t2 ,

fSk = fk + f̄k , f
A
k = fk − f̄k .

• JP = 1+

|Tpp→pXp|2 ∼ (M2
⊥)2(αP(0)−1)(F0M

4
⊥ + F1t1t2 sin2 φ0 +F2) , (4.6)

F0 = (f1∆1 − f̄1∆2)2 , (4.7)

F1 =
2(s2f1 − s1f̄1)2

s
+ 4M2

⊥f1f̄1 −
4(f0 + f̄0)2

M2
X

, (4.8)

F2 = 4(f0∆1 − f̄0∆2)2 , (4.9)

• JP = 2+

|Tpp→pXp|2 ∼ (M2
⊥)2(αP(0)−1)(F0M

4
⊥ + F1M

2
⊥ + F2) , (4.10)

F0 =
fS1

2 − 12f0f
S
3

24
+
fS1 (−4f0 + fA1 (t1 − t2) + 2λfS3 )

12M2
X

+

+
1

24M4
X

[
16f2

0 + 4f0

(
4fA1 (t1 − t2) + fS3 (3(t1 − t2)2 − λ)

)
+

+ 4fS3 f
A
1 (t1 − t2)λ+ fS3

2
λ+

+ fA1
2 (

(t1 − t2)2 + 3λ
) ]
, (4.11)

F1 = −1

3
f0

(
fS1 + 3fS2

)
+

+
fS2

6M4
X

[
λ2fS3 + 2λ

(
−f0 + fA1 (t1 − t2)

)
+ 6f0(t1 − t2)2

]
+

+
1

6M2
X

[
λ
(

2fS1 f
S
2 + 2f0f

S
3 + 3(fS1

2 − fA1
2
)/4
)
− 4f2

0 −

− 2f0f
A
1 (t1 − t2)

]
, (4.12)

F2 =

(
2f0 +

fS2 λ

M2
X

)2

6
. (4.13)
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c) d)

Figure 3: Experimental data from WA102. The dashed curve represents the “bare” cross-section

and the solid one is the unitarized result. a) η′, 0−+; b) f1(1285), 1++, all ti; c) f1(1285),

|t1 − t2| < 0.2 GeV2; d) f1(1285), |t1 − t2| > 0.4 GeV2.

Similar formulae for the differential cross-sections were obtained by other authors.

In reference [15] results were obtained from the assumption that the Pomeron acts as

a 1+ conserved or nonconserved current. It was shown in [16] and (with more detailed

investigations) in [17] that the same result follows from the simple Regge behaviour of

helicity amplitudes. Experimental data are in good agreement with these predictions.

A good description of those data in the framework of our approach (taking into account

the absorption) is obtained (figures 3,4).

In addition to the present description there are some models of the “glueball” produc-

tion based on the “instanton” dynamics [18].
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Figure 4: Experimental data from WA102 averaged over all measured ti values. The dashed curve

represents the “bare” cross-section and the solid one is the unitarized result. a) f0(980), 0++; b)

f0(1500), 0++; c) f2(1270), 2++; d) f2(1950), 2++.

5. WA102 and predictions for the LHC

It is important to stress the fact, that at the WA102 energies absorptive effects are not

so significant, and the azimuthal angle dependence looks like the “bare” one. We can

use this fact to simplify the fitting procedure, that has been already done by the WA102

collaboration. Only at large values of dP⊥ = |∆1 −∆2| the process of “soft” rescattering

can change the picture violently (see figure 3d).

In figures 3,4 we show the data from WA102 [7] and our curves for the “bare” and

unitarized amplitudes. One can see that all the features of the average φ0-dependence are

consistent with the data. It makes possible to predict the azimuthal angle behaviour at

higher energies and use these predictions as a spin-parity analyser.
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Figure 5: Results for the LHC energies. a) η′, 0−+; b) f1(1285), 1++, all ti; c) f1(1285),

|t1 − t2| < 0.1 GeV2; d) f1(1285), |t1 − t2| > 0.2 GeV2;

The main property is that unitarization adds up to the shift or distortion of the “bare”

cross-section towards small angles and to the reduction of its value. The difference is more

significant at the LHC than at the WA102 energies, and we should take it into account

necessarily. The “soft” survival probability is 0.25 → 0.3 for WA102 and 0.05 → 0.1 for

the LHC. It depends on the mass MX and on the kinematical cuts.

Features concerning each particle are the same as was mentioned in reference [15]:

• for the η′ meson the kinematical distortion because of the different reference frame

is totally compensated by the unitarization at the WA102 energy (figure 3a), and for

the LHC the peak in the cross-section is shifted towards 65o (figure 5a).
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Figure 6: Results for the LHC energies. a)f0(980), 0++; b)f0(1500), 0++; c)f2(1270), 2++; d)

f2(1950), 2++;

• for the f1(1285) we have almost a “flat” distribution at large values of |t1− t2| (figure

3d), since in the simplest case its cross-section is proportional to dP2
⊥ = (∆1−∆2)2.

For the LHC we obtain a more stronger suppression for large angles (figure 5d).

• the difference between 0++ qq̄ (f2(1270)) and non-qq̄ (f0(980), f0(1500), f2(1900))

states at WA102 (figure 4) changes due to unitarization effects. For the qq̄, the

azimuthal angle dependence becomes almost “flat” (figure 6c), and for the non-qq̄

mesons we see a shrinkage of the peak at φ0 = 0o. The same is valid for 2++

mesons. To separate qq̄ states from “glueball” candidates we can use the filter

which was proposed in refs. [9, 10]. It was shown that the quantity R = N(dP⊥ <
0.2 GeV)/N(dP⊥ > 0.5 GeV) is large (∼ 1) for “glueball” candidates and becomes

small for qq̄ states due to the differencies in the dynamics of particles production.
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Figure 7: Examples of the azimuthal angle dependence for large mass states. a) 1−−, MX =

50 GeV; b) 0−+, MX = 50 GeV;

For the low mass particles, which can be produced in EDDE, total cross-sections are

estimated to be of the order 1 ÷ 30 µb at the LHC. Cross-sections for the “glueball”

candidates f0(1500) and f2(1950) are about 30 µb (depends on the LHC kinematics and

may be larger) and the effective slope is 10. The typical value of ξ is of the order MX/
√
s ∼

10−4. Experimental possibilities of azimuthal angle measurements for particles with masses

less than 1 GeV (like η′ and f0(980)) seem to be doubtful. As to other light mesons,

measuremets are possible at low luminocities only, when appropriate resolution on ξ and

φ0 can be achieved. This has to be studied in futher Monte-Carlo simulations.

It is possible to apply the method to large mass particles. It was argued in [19] that

a heavy glueball (“knot”) 1−− with the mass close to 50 GeV may exist. One can see

from (4.2–4.10) that in this case, the φ0 dependence is simply defined by the unitarization

only, since M 2
⊥ ' M2

X = const. In this case, we have a good tool to check models for the

“soft” rescattering. Examples are depicted in figure 7.

6. Conclusions

Detailed investigations of the azimuthal angle dependence in EDDE can help to solve

several important problems:

• to check different models for “soft” processes and to study the real pattern of the

interaction.

• to understand the difference in the dynamics of production of the qq̄ and non-qq̄

states and their possible filtering.

• to determine the quantum numbers of new produced particles.
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