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Abstract. We present the results on non-perturbative quantum gravity effects related to extra dimensions
which can be comparable, in some cases, with the SM contributions, e.g. in lepton–lepton or lepton–nucleon
scattering. The case of cosmic neutrino gravitational interaction with atmospheric nucleons is considered
in detail.

1 Gravireggeon effects in multidimensional
scattering amplitudes

During the last years there has been a growing practical
interest in models with compact extra spatial dimensions.
Their compactification radius,Rc, varies from1 fm to 1 mm,
depending on the number of extra dimensions d = D−4 [1].
Themodels predictmassiveKaluza–Klein (KK) excitations
of the graviton and KK modes of the SM fields (provided
the latter are allowed to propagate in higher dimensions).
If D-dimensional space-time has a flat metric, the coupling
of the massive graviton modes with the SM particle is very
weak and is defined by the Newton constant GN = 1/M̄2

Pl,
where M̄Pl is the reduced Planck mass. Nevertheless, in the
case when SM particles are confined to a 4-dimensional flat
“brane”, summing up the KK graviton excitations results
in a D-dimensional gravitational coupling GD ∼ 1/M2+d

D ,
with a fundamental Planck scale MD of order 1 TeV [1].

Let us first consider the SM in D-dimensional flat space-
time, D > 4, without gravity. Due to the extra spatial
dimensions, the effective “transverse interaction region”
becomes larger than in four dimensions. One manifestation
of this is a modification of the Froissart–Martin upper
bound in a flat space-time with arbitrary D dimensions [2]:

σD
tot(s) � const(D) RD−2

0 (s), (1)
√

s being the collision energy. The “transverse radius”
in (1) is given by R0(s) = N(D) ln s/

√
t0, where t0 denotes

the nearest singularity in the t-channel, assumed non-zero,
while N(D) is some integer depending on D. It is interest-
ing to see what happens with the upper bound (1) when
we replace infinite extra dimensions by compact ones.

In [3] the Froissart–Martin bound was generalized for
scattering in D-dimensional space-time with compact extra
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dimensions. For one extra dimension with the compactifi-
cation radius Rc, the upper bound is of the form

Im TD(s, 0) � const(D) s RD−2
0 (s) Φ

(
R0

Rc
, D

)
, (2)

where Im T (s, t) is the scattering amplitude, t is the mo-
mentum transfer (in D dimensions) and Φ(R0/Rc, D) is a
known function. At Rc � R0(s) the equality (2) results
in [3]

Im TD(s, 0) � const(D) s RD−3
0 (s) Rc, (3)

while in the opposite limit, Rc � R0(s), the inequality (2)
reproduces the upper bound (1).

Now let us allow the gravity to come into play. As was
argued in a number of papers (D > 4) gravity becomes
strong in a transplanckian region (s � M2

D), since an
effective gravitational coupling, GDs, rises with energy.

In [4] the eikonal representation for the scattering am-
plitude of the gravitons in string theory was obtained:

A(s, t) = −2is
∫

dD−2beiqb
[
eiχ(s,b) − 1

]
, (4)

where χ(s, b) � iIm χ(s, b) is large at b � b1 = 2
√

α′
g ln s

(α′
g is the string tension). Thus, one gets asymptotically

for the inelastic cross section:

σD
in(s) � const(D) bD−2

1 (s). (5)

Due to the absence of infrared divergences in the flat space-
time with more than four dimensions, the gravitational
cross section (5) appears to be finite and similar to the
upper bound (1). The inelastic cross section appears to be
finite even in four dimensions in spite of massless exchanges.
It is interesting to ask: can this fact be derived rigorously
from the general principles?
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In what follows, we will first consider the scattering of
two particles in the model with one compact extra dimen-
sions (D = 5) in the transplanckian kinematical region:

√
s � MD, s � −t, (6)

t = −q2
⊥ being the four-dimensional momentum transfer.

The generalization to D > 5 is straightforward and will
be done below. Thus, we start from a consideration of the
scattering of bulk particles in four spatial dimensions, one
of which is compactified with the large radius Rc.

In the eikonal approximation the elastic scattering am-
plitude in the transplanckian kinematical region (6) is given
by the sum of reggeized gravitons in the t-channel. We
assume that both massless graviton and its KK massive
excitations lie on linear Regge trajectories:

α(tD) = α(0) + α′
g tD, (7)

where tD denotesD-dimensionalmomentumtransfer. Since
the extra dimension is compact with radius Rc, we come
to the splitting of the Regge trajectory (7) into a leading
vacuum trajectory:

α0(t) ≡ αgrav(t) = 2 + α′
gt (8)

and an infinite sequence of secondary, “KK-charged”, gravi-
reggeons [6]:

αn(t) = 2 − α′
g

R2
c

n2 + α′
gt, n � 1. (9)

The string theory implies that the slope of the gravireggeon
trajectory is universal for all s, and α′

g = 1/M2
s , where Ms

is the string scale.
If we assume that multidimensional theory at short

distances is a string theory, than the scale MD can be of
the order of the fundamental string scale Ms = (α′

g)
−1/2.

For instance, in the type-I theory of open and closed strings
one has [7]

Ms =
(

g2
s

4π

)2/(2+d)

MD, (10)

where gs is a gauge coupling at the string scale. This relation
leads to a D-dimensional Planck mass a bit higher than
the string scale (for g2

s /4π � 0.1).
Thus, instead of taking a “bare” graviton exchange, we

calculate a contribution from the trajectory to which this
KK graviton mode belongs:

− GN
1 + exp(−iπαn(t))

sin παn(t)
α′

gβ
2
n(t)

(
s

s0

)αn(t)

. (11)

The Born amplitude is, therefore, of the form

AB(s, t, n) (12)

= GN(2πRc)
[
i − cot

π
2

αn(t)
]
α′

g β2
n(t)

(
s

s0

)αn(t)

.

In order to get an idea of the possible t-dependence of
Regge residues β2

n(t), we consider scattering of D-dimen-
sional gravitons. The corresponding amplitude has been
calculated in [4]:

AB
string(s, tD) ∼ GD s2

|tD|
Γ (1 − α′

gtD/2)
Γ (1 + α′

gtD/2)
(α′

gs)
α′

gtD . (13)

The expression (13) is valid in the region α′
g|t| < 1 in which

it can be recast in the form

AB
string(s, tD) ∼ GD s2

|tD| eγ α′
gtD (α′

gs)
α′

gtD , (14)

where γ � 0.58 is the Euler constant.
Thus, we have A(s, t) ∼ exp(α′

gc t), where c is of order
of unity. Let us assume that the Regge residues in (12)
have an analogous t-dependence:

β2
n(t) = β2(0) eα′

gb0(t−n2/R2
c). (15)

Since the coupling of all KK states to the SM fields is
universal in the ADD model, we expect that β2

n(t) de-
pends on n via tD = t − n2/R2

c . Accounting for the fact
that the product α′

gb0 appears only in a combination with
α′

g ln(s/s0), we can neglect it in forthcoming calculations
at large s and put β2

n(t) � β2(0). At t → 0, the n = 0 ex-
pression (11) reproduces the singular term GNs/|t| related
with the massless graviton, which results in the relation
2β2(0)/πs2

0 = 1.
The expression for a 5-dimensional eikonal amplitude

looks like (k being the exchanged KK quantum number)

A(s, t, k) = 2iRcs

∫
d2b eiq⊥b+ikφ

π∫
−π

dφ
[
1 − eiχ(s,b,φ)

]
,

(16)
with the eikonal given by

χ(s, b, φ) =
1

4πs
(17)

×
∞∫
0

q⊥dq⊥ Jo(q⊥b)
1

2πRc

∞∑
n=−∞

e−inφAB(s,−q2
⊥, n).

The variable φ runs over the region −π � φ � π. These
inequalities imply that −∞ � y � ∞ in the limit Rc → ∞
(flat extra dimension), y = Rcφ being the 5th component
of the impact parameter.

One can easily obtain from (16) that at k = 0 and
s < 4/R2

c only modes with n = 0 contribute and effec-
tively χ(s, b, φ) = χ0(s, b), corresponding to the n = 0
contribution in the sum in (17). So, at low energy the scat-
tering amplitude does not feel the extra dimensions (the
factor Rc is trivial and is absent at proper normalization).

Let us consider first the imaginary part of the eikonal.
From (17) and (12) we obtain

Im χ(s, b, φ) = GNs
α′

g

8R2
g(s)

exp
[

− b2/4R2
g(s)

]
θ3(υ, q),

(18)
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where
Rg(s) =

√
α′

g(ln(s/s0) + b0) (19)

is a “Regge gravitational radius”. The quantity θ3 in (18)
is one of the Jacobi θ-functions [8]:

θ3(υ) = θ3(υ, q) = 1 + 2
∞∑

n=1

cos(2πnυ) qn2
. (20)

In our case, it depends on the variables

υ =
φ

2π
,

q = exp
[

− R2
g(s)/R2

c

]
. (21)

The function θ3(υ, q) is well defined for all (complex) υ and
all values of q such as |q| < 1. It has a singularity at q → 1
(see below). The θ-functions are often defined in terms of
the variable τ :

θ(υ) = θ(υ|τ), (22)

where
q = eiπτ . (23)

Let us define the ratio

a =
Rc

2Rg(s)
(24)

(that is, q = exp(−1/4a2)). From the equality [1]

Rc = 2 · 1031/d−17
(

1 TeV
MD

)1+2/d

cm (25)

we see that the compactification scale R−1
c varies from

10−3 eV for d = 2 to 10 MeV for d = 6. Since R−1
c �

(2Rg(s))−1 even at ultra-high energies, we have a � 1
and, consequently, (1 − q) � 1.

The behavior of θ3(υ, q) at q → 1 can be derived by
using the unimodular transformation of the θ3-function
(known also as the imaginary Jacobi transformation) [8]:

θ3

(
υ

τ

∣∣∣ − 1
τ

)
= (−iτ)1/2eiπυ2/τθ3(υ|τ). (26)

Here (−iτ)1/2 has a principal value which lies in the right
half-plane. In the variable q, the equality (26) looks like

θ3(υ, q) =
(

− π
ln q

)1/2 ∞∑
n=−∞

e(2πn−φ)2/4 ln q. (27)

The series in the RHS of (27) converges very quickly at
q → 1, contrary to the original series (20):

θ3(υ, q) (28)

= 2a
√

π

{
e−φ2a2

+
∞∑

n=1

[
e−(2πn−φ)2a2

+ e−(2πn+φ)2a2
]}

.

Notice that a2 = −1/4 ln q.

From all that was said above, we get

Im χ(s, b, φ) (29)

� GNs
α′

gRcπ1/2

8R3
g(s)

exp
[

− (b2 + R2
cφ

2)/4R2
g(s)

]
.

The expression (18) is directly generalized for d extra
dimensions (d � 1):

Im χ(s, b, φ1, . . . φd) = GNs
α′

g

8R2
g(s)

× exp
[

− b2/4R2
g(s)

] d∏
i=1

θ3(υi, q), (30)

where υi = φi/2π. Correspondingly, we obtain

Im χ(s, b, φ1, . . . φd) � GNs
α′

gR
d
cπd/2

8R2+d
g (s)

(31)

× exp
[

− (b2 + R2
cφ

2
1 + . . . + R2

cφ
2
d)/4R2

g(s)
]
.

We see from (31) that the imaginary part of the eikonal
decreases exponentially in the variables b, φi outside the re-
gion:

b2 + (Rcφ1)2 + . . . (Rcφd)2 � R2
0(s), (32)

where
R2

0(s) � 4R2
g(s) ln(s/M2

D) (33)

at high s.
Let tD = (t, −n2

1/R2
c , . . . ,−n2

d/R2
c) be a bulk momen-

tum transfer. Then we get the following expression for the
multidimensional scattering amplitude:

AD(s, t, n1, . . . , nd)

= −2is Rd
c

∫
d2b eiq⊥b

π∫
−π

dφ1 . . .

π∫
−π

dφd

×
d∏

i=1

einiφi

[
eiχ(s,b,φ1,...,φd) − 1

]
. (34)

Correspondingly, the inelastic cross section in the space-
time with d compact dimensions is given by

σD
in(s) = (2πRc)d (35)

×
∫

d2b

π∫
−π

dφ1 . . .

π∫
−π

dφd

[
1 − e−2Im χ(s,b,φ1,...,φd)

]
.

As was already shown, the imaginary part of the eikonal
is negligibly small outside the region (32). That results in
the estimates

σD
in(s) � const(D) ×




R2+d
0 (s), Rc � R0(s),

R2
0(s) Rd

c , Rc � R0(s),
(36)
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which remind one of the general upper bounds (1) and (3).
As was mentioned above, R0(s) � Rc for any reasonable
s. So, the size of the compact extra dimensions is irrelevant
to the behavior of the inelastic cross section and σD

in(s) ∼
(α′

g)
D/2−1(ln s)D−2. Only at s → ∞, when the transverse

interaction region R0(s) becomes much larger than Rc, we
get σD

in(s) ∼ α′
gR

D−4
c (ln s)2.

2 Scattering of the SM fields
in the presence of compact extra dimensions

Now we consider the case when the colliding particles are
confined on the 4-dimensional brane, while the exchange
quanta (KK gravitons) are allowed to propagate in the
bulk. Thus, the collisions of the SM particles take place in
a two-dimensional impact parameter space. In [9, 10] the
scattering of two SM particles was calculated in the eikonal
approximation by summing up only “bare” KK gravitons.
The massive graviton modes originating from the extra
dimensions change the four-dimensional propagator:

1
−t

→
∑

n2
1+...n2

d�0

1

−t +
d∑

i=1

n2
i

R2
c

. (37)

Since a contribution from only non-reggeized KK excita-
tions of the graviton has been taken into account in [9,10],
the eikonal has no imaginary parts in such an approach.
As was shown in [10], the D-dimensional brane amplitude
has a Born pole at t = 0 and an infinite phase. Notice that
the series (37) diverges at d � 2.

In [11] it was argued that the amplitude of the M → N
transition observed in four dimensions, AMN , is related to
a corresponding D-dimensional amplitude AD

MN by the re-
lation

AMN = (2πRc)d(1−(M+N)/2) AD
MN (38)

(in our case, M = N = 2). The amplitudes AMN have non-
zero limit at Rc → 0, reproducing the usual 4-dimensional
pseudo-euclidean case. Since the colliding particles are con-
fined on the brane, their momenta lie in four-dimensional
space. Therefore, the impact parameter belongs to the two-
dimensional space and we have to put φi = 0, i = 1, . . . , d,
in (31). With taking account of this, the expression for the
four-dimensional eikonal amplitude (in the presence of d
compact extra dimensions) looks like

A(s, t) = 2is
∫

d2b eiq⊥b
[
1 − eiχ(s,b)

]
, (39)

where χ(s, b) = χ(s, b, φ1 = 0, . . . , φd = 0). Taking into
account (31), we get the expression

Im χ(s, b) =
1

πd/2−1

s

M2
D

(
Ms

2MD

)d [
ln

(
s

s0

)]−(1+d/2)

× exp[−b2/4R2
g(s)], (40)

where the relation M2
Pl = (2πRc)d M2+d

D is used [1]. The
detailed analysis of the real part of the eikonal will be given

Table 1. Cross sections of the processes induced by graviton
exchanges in t-channel (second row) and s-channels (third row)
at

√
s = 1 TeV for different numbers of extra dimensions d (in

pbarn)

d 2 3 4 5 6
e+e−→ e+e−+X 1.06 ·103 1.10 ·102 1.78 ·101 3.84 1.02
e+e−→ff̄ 9.3 3.7 2.0 1.3 0.9

elsewhere. Here we only note that, contrary to (40), the
real part of the eikonal (with the massless graviton term
subtracted) decreases as a power of the impact parameter
at large b.

The important features of the gravitational contribu-
tion to the cross sections are its independence of the types
of colliding particles and a strong dependence on the colli-
sion energy. So, one can expect that at superplanckian
energies gravity exchanges will dominate the SM elec-
troweak interactions. That is why we now focus on leptonic
and semileptonic collisions. Gravitational contributions in
hadron–hadron collisions are masked at all reasonable en-
ergies by the background due to pomeron exchanges.

Let us first consider e+e− annihilation. Unfortunately,
future linear colliders will provide us with the CMS energies√

s around MD (0.5 ÷ 2 TeV). In order to estimate σe+e−
in

numerically, we need to fix the Regge free parameter s0
in (40). Since s0 is related rather with the mass scale of the
exchange quanta than with the mass scales of the colliding
particles, we can treat the scattering amplitude of the two
graviton (13) instead of SM particle collision, and deduce
that1

s0 = (α′
g)

−1. (41)

This relation is also motivated by duality [13]. The results of
our calculations of the inelastic cross section σe+e−

in at
√

s =
1 TeV based on the formulae (40) and (41) are presented
in the second row of Table 1.

These cross sections are larger than the cross sections
of the processes induced by massive graviton exchanges
in the s-channel (at least, for d � 6).2 For definiteness,
consider the matrix element for fermion pair production
e+e− → ff̄ :

M = GNT e
µνPµναβT f

αβ

∑
n2

1+...n2
d�0

1

s −
d∑

i=1

n2
i

R2
c

. (42)

Here Pµναβ is the tensor part of the graviton propagator,
while T

e(f)
µν is the energy-momentum tensor of the field

e(f) [17,18]. The sum in (42) diverges for d � 2. It can be
estimated if one convert it into an integral and introduce

1 In hadronic physics, the phenomenological parameter s0 ≈
1/α′(0), where α′(0) � 1 GeV−2 is the slope of the hadronic
Regge trajectories [12].

2 It is worth to note that, generally, QFTs for d > 0 are not
renormalizable. So, the following estimates are of illustrative
character.
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an explicit ultraviolet cut-off Ms. Then we get for d > 2:

∑
n2

1+...n2
d�0

1

s −
d∑

i=1

n2
i

R2
c

�




− 2Rd
c

(d − 2)Γ (d/2)(4π)d/2 Md−2
s ,

√
s � Ms,

Rd
c

Γ (1 + d/2)(4π)d/2

Md
s

s
,

√
s � Ms,

(43)

(the asymptotics at
√

s � Ms was first found in [18]).
Taking into account that the sum in indices results in

a factor proportional to s2, we obtain from (41) and (43)

M ∼ λ s2
(

Ms

MD

)2+d

×




1
M4

s
,

√
s � Ms,

1
sM2

s
,
√

s � Ms,

(44)

where λ = O(1) has opposite signs for small and large
√

s.
The two asymptotics (44) are well-matched at

√
s � Ms.

Thus, at
√

s � Ms we arrive at the expression

σ(e+e− → ff̄) � λ2 Nc

40π

(
Ms

MD

)2+d
s

M4
s

, (45)

where Nc represents the number of colors of the final
state. The result of the numerical calculations by using
formula (45) is presented in the third row of Table 1.

To compare, the hadronic SM background in e+e− an-
nihilation (e+e− → e+e− +hadrons), including the effects
due to the (anti)tagging of the electron and accounting for
all available data on γγ collisions, was estimated to be [15]

σe+e−
had (

√
s = 1 TeV) � (2.7–4.0) · 104 pb. (46)

The SM processes with different final states (
∑

q �=t qq̄,

W+W−, tt̄, χ̃+χ̃−, µ̃+
Rµ̃−

R, Zh, etc.) have cross sec-
tions which are less than 1 pb at

√
s = 1 TeV (see, for

instance, Fig. 1.3.1 from [16]). The highest rate has the
process e+e− → ∑

q �=t qq̄; its cross section is about 0.7 pb.
Our goal is to find a process in which gravity forces can

dominate SM interactions. Such a process has to obey the
following requirements:
(i) the colliding energy is much larger than MD � 1 TeV;
(ii) the SM cross section does not rise rapidly in s.

Thebest candidate is the scattering of ultra-high-energy
(UHE) neutrinos off the nucleons. These neutrinos are a
part of ultra-high-energy cosmic rays (UHECR) with en-
ergy E � 1018 eV, which are dominated by extragalactic
sources of protons [14]. It is the detection of UHE neutrinos
that can help us to discriminate between different origins
of UHECR. For instance, in cosmological (“bottom-up”)
scenarios, neutrino fluxes are almost equal to gamma ray
fluxes. In the astrophysical (acceleration) approach, the
neutrino flux is only a fraction of the gamma ray flux and

is modified due to the propagation of cosmic rays before
they reach the Earth.

The cosmic neutrinos with extremely high energies E �
1020 eV are also believed to explain the so-called Greisen–
Zatsepin–Kuzmin (GZK) cut-off of UHECR spectrum [19]
(see below). During UHECR propagation, the protons scat-
ter off the cosmic microwave background (CMB):

p + γCMB → N + π. (47)

Taking into account that typical CMB photon energies are
10−3 eV, one can see that the nucleon interaction length
drops to about 6 Mpc at the GZK bound of EGZK � 5 ·
1019 eV [19].3 The observation of UHECR at E > EGZK
is a serious problem for theories in which the origin of
CR is based on the acceleration of charged particles in
astrophysical objects.Due to the energy losses (say, through
the process (47)), the UHECR particles cannot originate
at distances larger than 60 Mpc from the Earth. On the
other hand, all potential astrophysical sources of UHECR
events are far beyond this distance.

At the same time the process (47) is the origin of so-
called cosmogenic neutrinos due to a consequent decay of
the charged pion as π± → µ± νµ, µ± → e± νe νµ. The frac-
tion of the proton energy carried by the neutrino isEν/Ep ≈
0.05 and is independent ofEp. The cosmogenic neutrino flux
was first estimated in [21,22]. More recent estimates can be
found in [23–26]. The predicted fluxes depend on the evolu-
tion parameter m and on the value of the redshift z, and lie
in the range: E2

ν Φν � (0.5 ·10−9–10−8) GeV cm−2 s−1 sr−1

at Eν = 1020 eV (ν = νµ, ν̄µ, νe).4
There are, however, other possible origins for the UHE

neutrinos. It is usually anticipated that Φνe ≈ Φν̄µ ≈ Φνµ .
We present below the total flux of muonic neutrinos and
antineutrinos in a number of models at Eν = 1020 eV.
In active galactic nuclei (AGN), the dominant mechanism
for neutrino creation is the accelerated proton energy loss
due to pp or pγ interactions [27]. Note that AGN produce
a large fraction of the gamma rays in the Universe, and
their spectra agree with the prediction that gamma rays
are produced by hadrons. In the AGN approach it was
obtained that E2

ν Φν � 0.3 · 10−8 GeV cm−2 s−1 sr−1 [27].
In the Z-burst scenario, cosmic neutrinos with extremely
high energies (Eν > 4 · 1021(1 eV/mν) eV) collide with
relic neutrinos [28, 29]. If the masses of the background
neutrinos mν are of several eV, the cosmic neutrinos ini-
tiate high-energy particle cascades which can contribute
10% to the observed cosmic ray flux at energies above
the GKZ cut-off (one of the main processes is a reso-
nant νν collision via the Z-boson). The neutrino flux is
E2

ν Φν � 0.3 ·10−6 GeV cm−2 s−1 sr−1 [28]. In the so-called
topological defect models [30], UHECR are produced via

3 Below EGZK, the dominant energy loss for the proton is
due to the process p γCMB → p e+e−, down to the threshold
energy of 4.8 · 1017 eV.

4 Some cosmic ray protons with energies above 1020 eV are
converted into neutrons by pion photo-production. The neu-
trons decay again into protons during their propagation pro-
ducing electronic anti-neutrinos. This mechanism is important
at Eνe � 1017 eV.
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decays of supermassive X-particles related to a grand unifi-
cation theory. The expected neutrino flux is about E2

ν Φν �
0.5 ·10−6 GeV cm−2 s−1 sr−1 [30]. In the gamma ray bursts
(GRB) model [31], the neutrino flux is strongly suppressed
at Eν > 1019 eV, since the protons are not expected to be
accelerated to energies much larger than 1020 eV.

It is worth to mention model-independent upper
bounds on the intensity of high-energy neutrinos
produced by photo-meson interactions. If the size of the
cosmic ray source is not larger than the photo-meson
free path, the upper limit is (for evolving sources)
4.5 · 10−8 GeV cm−2 s−1 sr−1 [32]. However, for optically
thick pion photo-production sources, the upper limit is less
restrictive: 2.5 ·10−6 GeV cm−2 s−1 sr−1 [33]. Note that the
considerably higher flux of cosmogenic neutrinos was ob-
tained in [34]. The cosmogenic flux is the most reliable, as
it relies only on two assumptions:
(i) the observed extremely high-energy cosmic rays
(EHECR) contain nucleons;
(ii) EHECR are primarily extragalactic in origin.

One possible way to resolve the GZK puzzle5 is to
assume that the primary UHECR particles are neutrinos
which deposit a part of their energy to proton fragments in
νN interactions. Unfortunately, the SM neutrino–nucleon
cross sections are not large enough to resolve the problem.
Indeed, at 1016 eV � Eν � 1021 eV the conventional con-
tributions from charged and neutral current νN -scattering
can be parameterized by [35]

σcc
νN � 4.429 · 103

(
Eν

108 GeV

)0.363

pb,

σnc
νN � 1.844 · 103

(
Eν

108 GeV

)0.363

pb. (48)

The total SMcross section for ν̄N -scattering has practically
the same magnitude and energy dependence at the energies
under consideration [35]. Putting Eν = 1021 eV in (48), we
get the estimate σνN

SM � 3.55 · 105 pb. Such a value of the
neutrino–nucleon cross section is too small to be relevant
to the GZK problem.

So, interactions beyond the SM6 are needed in order to
explain the possible excess of the UHECR flux. One possi-
bility is high-energy scattering mediated by gravitational
forces in theories with compact extra dimensions [36–40].
In a number of papers [40–47] it was shown that in a
model with extra dimensions the neutrino–nucleon cross
section can be enhanced by black hole production. The
corresponding cross sections were estimated to be one or-
der of magnitude or more above the SM predictions (48)
at Eν � 1018 eV.

In [41,43] the opportunities were considered to search
for black hole signatures by using neutrino telescopes such

5 Note, however, the recent paper in [20], in which it is argued
that the data from the Fly’s Eye, HiRes and Yakutsk cosmic
ray experiments are consistent with the expected suppression
of cosmic ray spectrum above 5 · 1019 eV. The AGASA data
show an excess in this region.

6 There is, however, a possibility that SM instanton-induced
processes may give a large neutrino–nucleon cross section [39].

as AMANDA/IceCube, Baikal, ANTARES or NESTOR.
The expected black hole production cross section is around
106 pb for Mmin

BH = MD = 1 TeV, where Mmin
BH is a minimal

mass of the produced black hole.7

Another possibility, which we will concentrate on, is
the observation of air showers triggered by UHE neutrino
interactions. The technique used for studying extensive air
showers of UHECRs or UHE neutrinos is the detection
of shower particles by ground detectors, or the detection
of fluorescence light produced by the shower. The first
technique was used by one of the largest AGASA experi-
ment, while the second one was developed for a Fly’s Eye
(HiRes) detector. The largest project under construction
is the Pierre Auger Observatory [48]. It will consist of two
sites, each having 1600 particle detectors overlooked by four
fluorescence detectors. For a detailed study of extensive air
showers with energy above 1018 eV, 10% of the events will
be detected by both ground array and fluorescence detec-
tors.

It is also worth to mention the space-based experiments
EUSO and OWL which will be sensitive to CRs with ener-
gies above 1019 eV. The future of neutrino astronomy may
be related with radio frequency detectors, such as RICE
and ANITA.

The neutrino interaction length is given by (in units of
km water equivalent, by 1 km we take ≡ 105 g cm−2)

Lν(Eν) � 1.7 · 107
[

1 pb
σνN (Eν)

]
km we. (49)

For a typical black hole production cross section σνN =
106 pb, we get Lν = 17 km we. This interaction length is
much larger than the vertical Earth’s atmospheric depth,
which is equal to 0.01 km we. The atmospheric depth
for neutrinos transverse (almost) horizontally is 36 times
larger. That is why it was proposed to search for uniformly
produced quasi-horizontal showers at ground level [49].8

The Fly’s Eye and AGASA Collaborations have
searched for deeply penetrating quasi-horizontal air show-
ers, with a depthLsh > 2500 g cm−2. The probability of cos-
mic protons and gamma rays initiating air showers deeper
than 2500 g cm−2 is about 10−9. Thus, any shower start-
ing that deep in the atmosphere is a nice candidate for a
neutrino event.

The non-observation of such events puts an upper limit
on the product of the neutrino differential flux, Φν =
(1/4π)dNν/dEν , times the neutrino–nucleon cross section.
The Fly’s Eye Collaboration gives the bound which can be
parametrized by [50]

7 The production rate of black holes depends on the number
of extra dimensions and, essentially, on the ratio Mmin

BH /MD.
8 At large zenith angles the background from hadronic cosmic

rays is negligible, since the showers initiated by hadrons are high
in the atmosphere due to the very short interaction length of
the proton. Around 1020 eV, the hadronic mean free path is only
40 g cm−2, and gamma rays of such energy have interactions
lengths of 45–60 g cm−2.
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(Φν σνN )(Eν)

≤ 3.74 · 10−42
(

Eν

1 GeV

)−1.48

GeV−1 s−1 sr−1, (50)

while the upper limit from [38] can be recast as follows:

(Φν σνN )(Eν)

≤ 10−41 ȳ−1/2
(

Eν

1 GeV

)−1.5

GeV−1 s−1 sr−1, (51)

where ȳ is the average fraction of the neutrino’s energy
deposited into the shower. The inequalities are valid in the
range 108 GeV≤Eν≤1011 GeV, provided σνN (Eν) ≤ 10 µb.

Let us now estimate the neutrino–nucleon cross section
in our approach. The neutrino scatters off the quarks and
gluons distributed inside the nucleon (see the comment
after formula (53)). Then the cross section is presented by

σνN
in (s) =

1∫
xmin

dx
∑

i

fi(x, µ2)σin(ŝ), (52)

where fi(x, µ2) is the distribution of parton i in momentum
fraction x, and ŝ = xs is the invariant energy of the partonic
subprocess. In our approach, the partonic cross section
σin(ŝ) is defined via the eikonal (40). As it follows from (40),
χ(ŝ, b) is small at ŝ � M2

D, and we can put xmin = M2
D/s

in (52). At ŝ � M2
D, the main contribution comes from

the region

b2 � b2
max(

√
ŝ) = 4Rg(ŝ) [ln(ŝ/M2

D) + 1]. (53)

We choose the neutrino energy Eν to be 1017 eV, 1018 eV,
1019 eV, 1020 eV, and 1021 eV. The invariant energy of the
νN collision is then 14 TeV, 43 TeV, 137 TeV, 433 TeV and
1370 TeV, respectively. Since bmax(

√
s = 1370 TeV) � 3 ·

10−2 GeV−1 = 6 · 10−3 fm (for 2 � d � 6), our assumption
that the neutrino interacts with the proton constituents is
well justified.

We use the set of parton distribution functions (PDFs)
from [51] based on an analysis of existing deep inelas-
tic data in the next-to-leading order QCD approximation
in the fixed-flavor-number scheme. The extraction of the
PDFs is performed simultaneously with the value of the
strong coupling and high-twist contributions to structure
functions. The PDFs are available in the region 10−7 <
x < 1, 2.5 GeV2 < Q2 < 5.6 · 107 GeV2 [51]. We take the
mass scale in PDFs to be µ = 1/bmax(

√
ŝ), with bmax de-

fined by (53). The result of our calculations of σνN
in (Eν) is

presented in Table 2.9 These neutrino–nucleon cross sec-
tions do not violate the experimental upper bounds (50)
and (51).

Note that the total SM cross sections for (ν + ν̄)-
scattering defined by formula (48) are equal to 6.27·103 pb,
1.45 · 104 pb, 3.35 · 104 pb, 7.72 · 104 pb, and 1.78 · 105 pb,

9 The SM contributions to the neutrino–nucleon cross sections
are not included in Table 2.

Table 2. Inelastic neutrino–nucleon cross section for the
graviton-induced scattering at fixed neutrino energy, Eν , for
different numbers of extra dimensions d (in pbarn)

d 2 3 4 5 6
Eν=1017 eV 8.63·104 5.63·103 5.53·102 7.16·101 1.13·101

Eν=1018 eV 6.53·105 3.39·104 2.47·103 2.26·102 2.41·101

Eν=1019 eV 4.20·106 2.05·105 1.21·104 8.59·102 6.99·101

Eν=1020 eV 2.05·107 1.32·106 7.06·104 4.29·103 2.94·102

Eν=1021 eV 8.74·107 7.47·106 4.56·105 2.52·104 1.52·103

respectively. Thus, the SM interactions become compara-
ble with (larger than) the gravity interaction for d = 3÷ 4
(for d � 4 ÷ 5), depending on the neutrino energy Eν .

The number of horizontal hadronic air showers with the
energy Esh larger than a threshold energy Eth, initiated
by the neutrino–nucleon interactions, is given by

Nsh(Esh � Eth)

= TNA

[∫
dEν Φν(Eν) σgrav

νN (Eν) A(Eν) θ(Eν − Eth)

+
∑

i=e, µ, τ

∫
dEνi

Φνi
(Eνi

) σSM
νiN (Eνi

) A(yiEνi
)

× θ(yiEνi − Eth)] , (54)

where NA = 6.022 · 1023g−1, T is a time interval, and A is
the detector acceptance (in units of km3 steradian water
equivalent). The quantity Φνi

(Eνi
) in (54) is the flux of

the neutrino of type i, and Φν(Eν) =
∑

i=e, µ, τ Φνi
(Eνi

).10

The inelasticity yi defines a fraction of the neutrino energy
deposited into the shower in the corresponding SM process
(see below).

The AGASA acceptance for deeply penetrating quasi-
horizontal air showers with zenith angles θ > 75◦ can be
found in the second paper of [46]. It rises linearly in Esh
in the interval 107 GeV < Esh < 1010 GeV, while in the
ultra-high-energy region the acceptance is constant and
equal to A(Esh � 1010 GeV) ≈ 1.0 km3 we sr [46].

The neutrino acceptance of the Pierre Auger detector
is roughly 30 times larger, taking into account the ratio
between Auger and AGASA surface areas. The acceptance
of the Auger ground surface array has been studied in detail
in [52], while the acceptance of the fluorescence detector
to neutrino-like air showers with large zenith angles was
calculated in [54, 55]. The Auger observatory efficiency is
high, since the low target density in the atmosphere is
compensated by the very large surface area of the array
(each side of it covers an area of 3000 km2). The highest
efficiency for quasi-horizontal shower detection is expected
at Esh > 109 GeV [52].

The number of extensive quasi-horizontal showers in-
duced by neutrinos with energy larger than some thresh-
old energy Eth, which can be detected by the array of the
southern site of the Pierre Auger observatory, is presented
10 Both neutrino and antineutrino are everywhere included in
the sum.
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Table 3. Yearly event rates for nearly horizontal neutrino-
induced showers with θzenith > 70◦ and Esh � Eth for cos-
mogenic neutrino flux from [25] at three values of threshold
energy Eth. The number of events corresponds to one side of
the Auger ground array

d 2 3 4 5 6
Eth = 108 GeV 34.88 2.00 0.32 0.21 0.20
Eth = 109 GeV 30.21 1.66 0.21 0.12 0.12
Eth = 1010 GeV 13.16 0.74 0.062 0.025 0.022

in Table 3. The neutrino–nucleon cross section σgrav
νN in (54)

describes the contributions from the reggeized KK gravi-
tons. The cosmogenic neutrino flux is from [25], assuming
a maximum energy of Emax = 1021 eV for the UHECR.
The acceptance of the Auger detector is taken from [52]
(it is not assumed that the shower axis falls certainly in
the array).

The neutrino–nucleon inelastic interactions induced by
gravireggeons remind us of the SM neutral currents events.
We assume that such events should result in hadronic dom-
inated showers without leading lepton. That is why we
choose the inelasticity to be equal to unity11 for the events
induced by gravireggeon exchange (the first term in the
RHS of (54)). We have also put ye = 1 for the SM charged
current interactions initiated by electronic neutrino, while
for the SM neutral interactions initiated by νe and for νµ/ντ

events we have taken ye = yµ = yτ = 0.24, following the
calculations presented in [53].

The neutrino event rates are expected to be much higher
for the neutrino fluxes obtained in “optimistic” scenarios
considered in [34]. As an example, we have presented the
yearly event rates for the Z-burst scenario in Table 4.
One can see from Table 4 that the main contribution to
the shower rate comes from the region of extremely high
neutrino energies (Eν > 1010 GeV).This canbeunderstood
as follows: at UHEs, the neutrino flux times Eν varies slowly
in Eν in the Z-burst model (up to 2.5·1012 GeV), while both
the acceptance of the Auger array and the “gravitational”
part of the neutrino–nucleon cross section rise with the
neutrino energy (see Table 2).

The calculations of the yearly event rates in the energy
interval 108 GeV � Esh � 1011 GeV in the Z-burst scenario
result in 44, 2.7, 0.38, 0.26, and 0.25 for d = 2, 3, 4, 5 and 6,
respectively. Remembering that the combined results from

Table 4. The same as in Table 3, but for the Z-burst neutrino
flux from [28]

d 2 3 4 5 6
Eth = 108 GeV 12.60 · 102 11.53 · 101 9.26 1.90 1.50
Eth = 109 GeV 12.59 · 102 11.53 · 101 9.26 1.90 1.50
Eth = 1010 GeV 12.55 · 102 11.51 · 101 9.20 1.85 1.44

11 The estimates from [40] are not applicable in our case, since
in [40] the energy loss in the elastic neutrino–nucleon cross
section induced by “bare” gravitons was considered, while we
deal with inelastic cross section in the gravireggeon model.

AGASA and Fly’s Eye imply an upper bound of 3.5 at 90%
CL from quasi-horizontal neutrino events [46], and taking
into account that the AGASA acceptance is roughly 30
times smaller than the Auger acceptance, we can conclude
that the Z-burst neutrinos do not violate the bounds (50)
and (51) in our scheme for d � 3.12

3 Conclusions

In the model with compact extra spatial dimensions, we
have calculated the contribution of the KK gravireggeons
to the inelastic cross section of the high-energy scattering
of both D-dimensional and four-dimensional SM particles.
The usually adopted summing of non-reggeized gravitons
leads to a divergent sum in the KK-number n (for D � 6).
In our approach, on the contrary, the contribution of the
gravireggeon with the KK-number n to the eikonal is expo-
nentially suppressed at large n. As a result, the correspond-
ing sum in n is finite, and it can be analytically calculated.

In the case when the SM fields propagate in all D
dimensions, the dependence of the inelastic cross section
on the invariant energy

√
s appeared to be similar to the

upper limit for the total cross section obtained previously
for the SM in the D-dimensional flat space-time without
gravity. When, on the contrary, only gravity lives in extra
dimensions, the imaginary part of the eikonal is derived
in a closed form, which depends (except for

√
s and the

impact parameter b) on the number of extra dimensions
d = D − 4 and their size Rc.

We have estimated the event rate for the quasi-hor-
izontal air showers, induced by the interactions of UHE
neutrinos with nucleons, which can be yearly detected by
the ground array of the Pierre Auger observatory. It de-
creases rapidly if d varies from 2 to 5. For d = 4, we
expect 10 events per year for the neutrino flux predicted
in the Z-burst model. For the cosmogenic neutrino flux,
gravireggeon-induced interactions do not increase the event
rate significantly with respect to the number of the neu-
trino events calculated in the SM, except for the case d � 3,
which is likely to be excluded by the cosmological data.
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