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Exclusive photoproduction of heavy quarkonia at HERA is analyzed in the framework
of the Regge-eikonal approach together with the nonrelativistic bound state formalism. To-
tal and differential cross-sections for the process γ + p → (QQ̄)1S + p are calculated. The
model predicts cross-sections of Exclusive Double Diffractive Events (EDDE) at TeVatron
and LHC.
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1 Introduction

The study of properties of bound states of heavy quarks plays a central role in
the understanding of strong interactions and verification of different QCD inspired
and nonperturbative models, because such processes give a very exciting possibility
to observe interplay of ”hard” and ”soft” regimes [1]. There have been intensive
experimental studies of the J/Ψ and Υ photoproduction at HERA [2],[3] and also
a lot of theoretical investigations [4]-[8].

In this paper we consider exclusive photoproduction of V = (QQ̄)1S states from
another viewpoint. There are some other interesting processes that will be investi-
gated at present and future hadronic colliders. We need estimations of cross-sections
for such processes and can use the data from HERA as a source of normalization
of phenomenological models. Here we show that the extended Regge-Eikonal ap-
proach [9]-[12] gives not only a good description of the data on exclusive vector
meson photoproduction but can be used also to predict rates of Exclusive Double
Diffractive Events (EDDE) at LHC and Tevatron. The advantages of these events
have been considered in [13],[14].

2 Calculations

In Fig. 1 we illustrate in detail the process γ(q)+p(p) → V(pv)+p(p′). Off-shell
proton-gluon amplitude T in Fig. 1 is treated by the method developed in Ref. [9],
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Fig. 1. Diagram for the process γ + p → V + p.
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Fig. 2. Diagrams for the process γ + g∗
→ V + g∗.

which is based on the extension of Regge-eikonal approach, and succesfully used for
the description of the data from hadron colliders [10]-[12]. The amplitude A of the
process γ(q)+g(κ1) → V(pv)+g(κ2) (see Fig. 2) is calculated in the nonrelativistic
bound state approximation(see [4]-[6] and ref. therein):

A =
Rv0√
16πMv

Sp
[

Ô(p̂v − Mv)ǫ̂v

]

(1)

Ô = eQeg2 δab

2
√

3

(

(pvα − 2κ1α + κ̂1γα)ǫ̂γ(pvβ + 2κ2β − γβκ̂2)

(−pvκ1 + κ2
1 + i0)(pvκ2 + κ2

2 + i0)
+ 5 perm.

)

, (2)

where p2
v = M2

v , eQ is the charge of heavy quark, Rv0 is the absolute value of the
vector meson radial wave function at the origin, ǫv,γ are photon and vector meson
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polarization vectors correspondingly. Permutations are taken for all gauge bosons.
Notations and vector decompositions that are used in the article are

κ1 = κ +
∆

2
, κ2 = κ − ∆

2
, p = p′ +

m2
p

s
q′, q = q′ − Q2

s
p′, (3)

Q2 = −q2 , p2 = m2
p , q′2 = p′2 = 0 , s ≃ 2p′q′ ,

κ =
xv

2
(αp′ + βq′) + κ⊥ , xv =

M2
v

s
, κ2

⊥ = −~κ2 , y =
4~κ2

M2
v

, y′ = −4κ2

M2
v

,

∆ = xv ([1 + yQ + y∆] p′ − y∆q′) + ∆⊥ , yQ =
Q2

M2
v

, t ≃ ∆2
⊥ = −~∆2 , y∆ =

~∆2

M2
v

,

pv = q + ∆ , y0 =
m2

p

M2
v

Photon and vector meson polarization vectors in the general case (Q 6= 0) can be
represented as follows:

ǫγ⊥q = ǫγ0q = 0 , ǫγ
2
⊥ = −ǫγ

2
0 = −1 , ǫγ0 =

1

Q
(q′ + xvyQp′) , (4)

ǫv⊥pv = ǫv‖pv = 0 , ǫv⊥ = v⊥ +
2(~v~∆)

s
(p′ − q′) , v2

⊥ = −~v2 ,

ǫv‖ =
1

Mv
(q′ − xv(1 − y∆)p′ + ∆⊥)

For the amplitude of the process γ(q) + p(p) → V(pv) + p(p′) we have:

M =

∫

d4κ

(2π)4
1

(κ2
1 + i0)(κ2

2 + i0)
Aαβ, abTαβ, ab (5)

Tαβ, ab = δab

(

Gαβ − P1αP2β

P1P2

)

T D
gp→gp , (6)

Gαβ = gαβ − κ2ακ1β

κ1κ2
, (7)

P1 = p − pκ1

κ1κ2
κ2 , P2 = p − pκ2

κ1κ2
κ1 , (8)

Generally the amplitude T D
gp→gp can be represented in the Regge-eikonal

form [10],[12] with fixed parameters of trajectories from Ref. [12] (see Table. 1),
in which the eikonal is dominated by three vacuum trajectories (Pomerons with
different properties). It follows from the analysis below that at small t the ampli-
tude T D

gp→gp takes the simple Regge form, which is dominated by the 3rd (”hard”)
Pomeron:

T D
gp→gp ≃ cgp

(

e−i π
2

2pκ

s0 − κ2

)αP3 (t)

eb
(3)
0 t , b

(3)
0 =

r2
gP3

+ 0.5r2
pP3

4
, (9)

Czech. J. Phys. 54 (2004) A 3



Petrov V.A. et al.

Table 1. Parameters αPi
(0), α′

Pi
(0), r2

pPi
are obtained from the fit to the data on

p(p̄) + p → p(p̄) + p [12] and remain fixed during the J/Ψ data fitting.

Pomeroni 1 2 3

αPi
(0) − 1 0.0578 ± 0.0020 0.1669 ± 0.0012 0.2032 ± 0.0041

α′

Pi
(0) (GeV−2) 0.5596 ± 0.0078 0.2733 ± 0.0056 0.0937 ± 0.0029

r2

pPi
(GeV−2) 6.3096 ± 0.2522 3.1097 ± 0.1817 2.4771 ± 0.0964

where s0 ≃ 1 GeV is the scale parameter of the model that is used in the global
fitting of the data on pp(pp̄) scattering [11],[12], r2

pP3
, αP3(t) = αP3(0) + α′

P3
(0)t

are defined in Table.1, r2
gP3

and cgp are extracted by the procedure (16)-(21). With
notations (3) we have:

d4κ = π
M4

v xv

32
dαdβdy = −π

M4
v xv

64

dα

α
dy′dy (10)

In the limit Q → 0 , t → 0 only the amplitude M⊥⊥ survives:

|M⊥⊥|2 ≃ K2
vIv(t)2c2

gp

(

s

s0

)2αP3 (0)

e2b3t , (11)

b3 = b
(3)
0 + α′

P3
(0) ln

s

s0
(12)

K2
v =

4096αeα
2
se

2
Q|Rv0|2

3M3
v π4

=
1024α2

sΓ(V → e+e−)KNLO

3Mvπ4αe
, (13)

Iv(t) =

∫

dαdy′

∫ 1

0

dy
f(α, y, y′)

(α − 1 − y′ + i0)(α + 1 + y′ − i0)
· (14)

· 1

(αy′ − y + y′ − i0)(αy′ + y − y′ − i0)

f(α, y, y′) =
1

2ααP3 (t)−1

[

α2yy′

(y − y′)2

]





y − y′

2
(

1 + y′

4y0

)





αP3 (t)

(15)

Now let us extract the values of parameters from the fit to the data on elastic
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J/Ψ photoproduction [2]. At first we write the amplitude M⊥⊥ in the Regge-eikonal
form with parameters from Table.1 and the coefficient that corresponds to the
simple Vector Dominance Model (VDM):

M⊥⊥ =

√

3Γ(V → e+e−)

αeMv
4πs

∫ ∞

0

db2 J0(b
√
−t)

e2i(δ1+δ2+δ3) − 1

2i
, (16)

where

δi = i
c
(i)
vp

s0

(

e−i π
2

s

s0

)αPi
(0)−1

e
−b2

ρ2
i

4πρ2
i

, (17)

ρ2
i = 4α′

Pi
(0) ln

(

e−i π
2

s

s0

)

+ r2
gPi

+ 0.5r2
pPi

As will be seen below, in our case the VDM plus Regge-eikonal approach represen-
tation (16) is applicable.

Results of this fit for J/Ψ meson are shown in Figs.3-6. As we see from figures,
the main contribution to the cross-section is given by the Born term of the 3rd
Pomeron. The 1st ”soft” Pomeron gives no contribution. The term corresponding
to the 2nd Pomeron vanishes faster with t, and gives the contribution less than 1%,
when t ≤ −0.2 GeV2. Numerical estimations show that absorbtive corrections play
minor role at t ≃ t∗ = −1/2b3, where b3 is obtained from (12). Using these facts,
we keep in (16) only the Born term for the 3rd Pomeron with parameters

r2
gP3

= 2.54 ± 0.41 GeV−2 , c
(3)
J/Ψp = 1.11 ± 0.07 , χ2/dof = 1.48 (18)

and take the integral Iv at t = t∗. Now we can estimate the constant cgp in (11)
from the comparison of two formulae for the amplitude M⊥⊥:

cgp =

√

3Γ(V→e+e−)
αeMv

KvIv(t∗)
c(3)
vp =

3π2

32αsIv(t∗)
√

KNLO

c(3)
vp , (19)

where αe and αs are electromagnetic and strong coupling constants correspondingly.
KNLO is the next to leading order correction coefficient.

Taking for J/Ψ mesons

MJ/Ψ = 3.1 GeV , αs(M
2
J/Ψ) = 0.25 , (20)

IJ/Ψ(t∗) ≃ 0.83 , 35 GeV < W =
√

s < 260 GeV ,

Γ(J/Ψ → e+e−) = 5.26 ± 0.37 keV , KNLO ≃ 2 (see, for example, [15])

we get from (19):

cgp = 3.5 ± 0.4 (21)

Czech. J. Phys. 54 (2004) A 5



Petrov V.A. et al.

10
-12

10
-10

10
-8

10
-6

10
-4

10
-3

0 2 4 6

dσ
γ p

 →
 J

/ψ
 p

/d
t (

m
b/

G
eV

2 )

W = 35 GeV

10
-6

10
-5

10
-4

0 0.5 1 1.5

W = 40 GeV

10
-6

10
-5

10
-4

0 0.5 1 1.5

W = 60 GeV

10
-6

10
-5

10
-4

0 0.5 1 1.5

|t| (GeV2)

W = 80 GeV

Fig. 3. Differential cross-sections of the process γ + p → V + p at different values of W.
Solid curve is the Born term for the 3rd Pomeron and dashed one is the unitarized result.

Here errors are estimated from uncertanties of quantities in (19).

The data on Υ production [3] gives the possibility to check the model predic-
tions. The result of ZEUS collaboration for the ratio of total cross-sections of J/Ψ
and Υ photoproduction:

σγp→Υp

σγp→J/Ψp
= (4.8 ± 2.2(stat.)

+0.7

−0.6
(sys.)) · 10−3 (22)

If we assume that the constant cgp is the same for both processes, and the slope of
the exponent does not change much with energy, then from the expression (11) we
will get at the same value of W :
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Fig. 4. Differential cross-sections of the process γ + p → V + p at different values of W.
Solid curve is the Born term for the 3rd Pomeron and dashed one is the unitarized result.

σγp→Υp

σγp→J/Ψp
≃

[

αs(M
2
Υ)IΥ

αs(M2
J/Ψ)IJ/Ψ

]2
Γ(Υ → e+e−)KΥ

NLOMJ/Ψ

Γ(J/Ψ → e+e−)K
J/Ψ
NLOMΥ

= (3.1 ± 1.1) · 10−3 ,

(23)
where

Γ(Υ → e+e−) = 1.32 ± 0.04 ± 0.03 keV , (24)

MΥ = 9.46 GeV , αs(M
2
Υ) ≃ 0.2 , IΥ ≃ 0.21 ,

KNLO ∼ 1

1 − 16αs

3π

(see Ref. [15]) ,

and uncertainty of the result originates from the errors of parameters in (23). The-
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Fig. 5. Differential cross-sections of the process γ + p → V + p at different values of W.
Solid curve is the Born term for the 3rd Pomeron and dashed one is the unitarized result.

oretical estimation does not contradict the experimental value (22).
The second estimation can be done for the EDD dijet production at TeVatron

energies. Recent CDF results [16],[17] for the upper bound of the cross-section of
the process p + p → p + jet + jet + p are the following:

ET > 7 GeV , σ < 3.7 nb , (25)

ET > 10 GeV , σ < 0.97 ± 0.065 (stat.) ± 0.272(sys.) nb ,

ET > 25 GeV , σ < 34 ± 5 (stat.) ± 10(sys.) pb ,

where ET is the transverse momentum of the jet. After theoretical calculations by
the method developed in Refs. [13],[18] we extract upper bounds for the parameter
cgp from (25):
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Fig. 6. Total cross-section of the process γ + p → V + p. Solid curve is the Born term for
the 3rd Pomeron and dashed one is the unitarized result.

ET > 7 GeV , cgp < 3.3 , (26)

ET > 10 GeV , cgp < 3.4 ,

ET > 25 GeV , cgp < 4.2 .

Values of cgp are close to our estimation (21).

Conclusions

We can conclude that the generalized Regge-eikonal approach with 3 different
Pomerons describes well the data on J/Ψ production. The main contribution to
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the cross-section comes from the term corresponding to the 3rd, so called, ”hard”
Pomeron. This makes possible to extract the corresponding parameter of the model.

The upper bound for the same parameter is found to be close to our result,
when calculated from experimental estimations on EDD di-jet production made by
CDF. It indicates once more the applicability of the Regge-eikonal approach and
gives us the tool for further predictions.

This work is supported by the Russian Foundation for Basic Research, grant no. 04-

02-17299
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