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Abstract. A model of a three pomeron contribution to high energy elastic pp and p̄p scattering is proposed.
The data are well described for all momenta (0.01 ≤ |t| ≤ 14.GeV2) and energies (8. ≤ s1/2 ≤ 1800.GeV)
(χ2/d.o.f. = 2.60). The model predicts the appearance of two dips in the differential cross-section which
will be measured at LHC. The parameters of the pomeron trajectories are α(0)P1 = 1.058, α′(0)P1 =
0.560GeV−2; α(0)P2 = 1.167, α′(0)P2 = 0.273GeV−2; α(0)P3 = 1.203, α′(0)P3 = 0.094GeV−2.

1 Introduction

Eagerly awaited high energy collisions at LHC will give
access not only to yet unexplored small distances but also
simultaneously to large distances that were neither ex-
plored [1]. Future measurements of total and elastic cross-
sections at LHC [2] tightly related to the latter domain
naturally stimulate further searches for new approaches
to diffractive scattering at high energies.

Recently some models with multi-pomeron structures
were proposed [3–5]. Some of these [3,4] use Born am-
plitudes with two pomerons as single [3] or double poles
[4]. The formal violation of the Froissart–Martin bound in
some of these models is considered as “practically negligi-
ble” though in terms of partial-wave amplitudes unitarity
violation is flagrant at present-day energies. Nonetheless
a model of such a kind [5] based on the two pomeron ap-
proach shows quite a good agreement with DIS data.

The eikonal models that are capable of describing the
data for non-zero transferred momenta are developed in [6,
7]. In some cases a “generalized eikonal representation” is
used [6] together with a dipole (monopole) pomeron con-
tribution, in the others the conventional eikonal is sup-
plemented with a “QCD motivated” part consisting of
three terms [7]. It is worth noticing that the two pomeron
eikonal has been applied to the description of the data
more than ten years ago (see, e.g., [8]).

The very diversity of the models hints that maybe the
most general way to describe high energy diffraction is
just to admit an arbitrary number of pomerons (i.e. all
vacuum Regge poles contributing non-negligibly at rea-
sonably high energies. Roughly, they should have inter-
cepts not lower than 1). On the one hand this seems to
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be not very economical. But on the other hand we could
argue that no basic principle forbids more than one sin-
gle pomeron. We could also add that in the perturbative
framework the account of the renormalization group leads
presumably to converting of the fixed branch point (in the
J-plane) into an infinite series of simple poles accumulat-
ing down to 1 from some maximal value [9]. Unfortunately
perturbative searches in this field are far from satisfactory
from many viewpoints.

In this paper we would like to make a first step in
the realization of the above formulated hypothesis about a
many pomeron structure of the eikonal. As it seems impos-
sible to describe the data in the framework of the eikonal
approach in presence of one single pole pomeron contribu-
tion [10], and the two pomeron option does not improve
the quality of the description drastically (more details are
given in the text), it is fairly natural to try the next, three
pomeron, option for the eikonal. We will see below that
this choice appears to be rather lucky.

2 The model

Let us briefly outline the basic properties of our model.
The unitarity condition is

ImT (s,b) � |T (s,b)|2 + η(s,b),

where T (s,b) is the scattering amplitude in the impact
representation, b is the impact parameter, and η(s,b) is
the contribution of inelastic channels; this implies the fol-
lowing eikonal form for the scattering amplitude T (s,b):

T (s,b) =
e2iδ(s,b) − 1

2i
, (1)

where δ(s,b) is the eikonal function. The unitarity condi-
tion in terms of the eikonal looks as follows:
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Imδ(s,b) ≥ 0, s > sinel. (2)

The eikonal function is assumed to have simple poles in
the complex J-plane and the corresponding Regge trajec-
tories are normally being used in the linear approximation

α(t) = α(0) + α′(0)t. (3)

Accordingly we get the following contribution (modulo
the signature factor) to the eikonal function in t-space
(here t is the momentum transfer):

δ̂(s, t) = c

(
s

s0

)α(0)

et(ρ2/4), (4)

where
ρ2 = 4α′(0) ln

s

s0
+ r2 (5)

is referred to as the “reggeon radius”.
In order to relate the t- and b-spaces one proceeds via

Fourier–Bessel transforms

f̂(t) = 4πs

∫ ∞

0
db2J0(b

√−t)f(b),

f(b) =
1

16πs

∫ 0

−∞
dtJ0(b

√−t)f̂(t). (6)

Making use of (6) we obtain the following b-representation
of the eikonal function (4):

δ(s, b) =
c

s0

(
s

s0

)α(0)−1 e−b2/ρ2

4πρ2
. (7)

For the cross-sections we use the following normaliza-
tions:

σtot =
1
s
ImT (s, t = 0),

σelastic = 4π

∫ ∞

0
db2|T (s, b)|2,

dσ

dt
=

|T (s, t)|2
16πs2

,

ρ =
ReT (s, t = 0)
ImT (s, t = 0)

. (8)

In the present model we assume the following repre-
sentation for the eikonal function:

δp̄p
pp(s, b) = δ+

P1
(s, b) + δ+

P2
(s, b) + δ+

P3
(s, b)

∓ δ−
O

(s, b) + δ+f (s, b) ∓ δ−
ω (s, b), (9)

where δ+
P1,2,3

(s, b) are pomeron contributions. “+” denotes
C even trajectories (the pomeron trajectories have the
following quantum numbers: 0+J++), ‘−’ denotes C odd
trajectories, δ−

O
(s, b) is the odderon contribution (the odd-

eron is the C odd partner of the pomeron with quantum
numbers 0−J−−); δ+f , δ−

ω (s, b) are the contributions of sec-
ondary reggeons, f (C = +1) and ω (C = −1).

The form (4) is not compatible with crossing sym-
metry, which is easily restored by the substitution s →
se−iπ/2. We introduce a new dimensionless variable

s̃ =
s

s0
e−iπ/2, (10)

and obtain each C+ and C− contribution with its appro-
priate signature factor and the form:

δ+(s, b) = i
c

s0
s̃α(0)−1 e−b2/ρ2

4πρ2
, (11)

ρ2 = 4α′(0) ln s̃ + r2 (C = +1);

δ−(s, b) =
c

s0
s̃α(0)−1 e−b2/ρ2

4πρ2
, (12)

ρ2 = 4α′(0) ln s̃ + r2 (C = −1).

The parameters of secondary reggeon trajectories are
fixed according to the parameters obtained from a fit of
the meson spectrum [11]:

αf (t) = 0.69 + 0.84t,

αω(t) = 0.47 + 0.93t. (13)

All the trajectories are taken in the linear approxima-
tion

αi(t) = αi(0) + α′
i(0)t (i = P1, P2, P3, O). (14)

Let us remark that all good fits require αP(0) − 1 ≡ ∆P >
0, which means that the Born amplitude will eventually
exceed the Froissart–Martin [12] unitarity bound. This
violation of unitarity is removed by all kinds of “eikon-
alization”. Nevertheless, one must take into account the
following unitarity constraints [13]:

αP(0) ≥ αO(0) and α′
P(0) ≥ α′

O(0), (15)

where P is the leading pomeron trajectory (the one with
the highest intercept ∆P).

3 Results

We fit the adjustable parameters over a set of 982 pp and
p̄p data of both forward observables (the total cross-sec-
tions σtot, and ρ the ratios of real to imaginary part of
the amplitude) in the range 8. ≤ s1/2 ≤ 1800. GeV and
angular distributions (dσ/dt) in the ranges 23. ≤ s1/2 ≤
1800.GeV, 0.01 ≤ |t| ≤ 14.GeV2.

It is instructive to start with the two pomeron option.
We give corresponding results in Figs. 1, 2, 3, 4 and 5. In
this case we use 16 parameters and achieve χ2/d.o.f. =
10.87. The parameters obtained in the two pomeron op-
tion are presented in Table 1 (all the errors are obtained
according to MINUIT output). The description of the data
is still unsatisfactory, though it is better than in the case
of one pomeron contribution to the eikonal function [10].

Now let us consider the results of the three pomeron
option. Having used 20 adjustable parameters we achieved
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Fig. 1. Total cross-sections of pp scattering (hollow circles)
and p̄p scattering (full circles) and curves corresponding to
their description in the two pomeron model

Fig. 2. Ratios of the real to the imaginary part of the for-
ward pp scattering amplitude (hollow circles) and p̄p scatter-
ing amplitude (full circles) and curves corresponding to their
description in the two pomeron model

Fig. 3. Differential cross-sections for pp scattering and curves
corresponding to their description in the two pomeron model.
A factor 10−2 between each successive set of data is omitted

Fig. 4. Differential cross-sections for p̄p scattering and curves
corresponding to their description in the two pomeron model.
A factor 10−2 between each successive set of data is omitted

χ2/d.o.f. = 2.60. The parameters are presented in Table 2
(all the errors are obtained according to MINUIT output).

The results are shown in Figs. 6, 7, 8, 9, 10, 11, 12
and 13.

We do not include elastic cross-section data sets into
the fit and predictions of the model for elastic cross-sec-
tions can be seen in Fig. 7.

In order to estimate the quality of the description, we
have calculated partial χ2 over all sets of data used in the
fit. This χ2 is calculated using the following formula:

χ2 =
ntot∑
n=1

(σtheory(n) − σexp(n))2

(∆(σexp(n)))2
, (16)
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Fig. 5. Predictions of the two pomeron model for the differ-
ential cross-section of pp scattering which will be mesured at
LHC with s1/2 = 14.TeV and at RHIC s1/2 = 500.GeV. The
data corresponding to the energy s1/2 = 62.GeV is multiplied
by 10−8, RHIC by 10−12, and that of LHC by 10−16

Table 1. Parameters obtained by fitting to the data with two
pomeron contributions

Pomeron1 f -reggeon

∆P1 0.0859 ± 0.0021 ∆f −0.31 (FIXED)
cP1 53.18 ± 0.86 cf 188.51 ± 12.13
α′

P1 0.360 ± 0.009GeV−2 α′
f 0.84GeV−2 (FIXED)

r2
P1 9.595 ± 0.6289GeV−2 r2

f 41.424 ± 7.971GeV−2

Pomeron2 ω-reggeon

∆P2 0.14437 ± 0.0051 ∆ω −0.53 (FIXED)
cP2 6.87 ± 0.36 cω −171.36 ± 8.23
α′

P2 0.082 ± 0.004GeV−2 α′
ω 0.93GeV−2 (FIXED)

r2
P2 4.765 ± 0.2533GeV−2 r2

ω 2.621 ± 6.362GeV−2

Odderon

∆O −0.2707 ± 0.1178 s0 1.0GeV2 (FIXED)
cO 1.8134 ± 1.4837
α′

O 0.029 ± 0.023GeV−2

r2
O 1.159 ± 0.591GeV−2

where ntot is the number of data in the set, σexp is the ex-
perimental value of the quantity that is described, σtheory
is our prediction for this quantity, and ∆(σexp(n)) is the
experimental uncertainty.

In the sets of data corresponding to total cross-sections
and to ratios of real to imaginary parts of the forward scat-
tering amplitude we discarded those experimental points
which gave a contribution of more than 2. to the χ2. Hav-

Table 2. Parameters obtained by fitting to the data

Pomeron1 f -reggeon

∆P1 0.0578 ± 0.0020 ∆f −0.31 (FIXED)
cP1 53.007 ± 0.795 cf 191.69 ± 2.12
α′

P1 0.5596 ± 0.0078GeV−2 α′
f 0.84GeV−2 (FIXED)

r2
P1 6.3096 ± 0.2522GeV−2 r2

f 31.593 ± 1.099GeV−2

Pomeron2 ω-reggeon

∆P2 0.1669 ± 0.0012 ∆ω −0.53 (FIXED)
cP2 9.6762 ± 0.1600 cω −174.18 ± 2.72
α′

P2 0.2733 ± 0.0056GeV−2 α′
ω 0.93GeV−2 (FIXED)

r2
P2 3.1097 ± 0.1817GeV−2 r2

ω 7.467 ± 1.083GeV−2

Pomeron3

∆P3 0.2032 ± 0.0041 s0 1.0GeV2 (FIXED)
cP3 1.6654 ± 0.0669
α′

P3 0.0937 ± 0.0029GeV−2

r2
P3 2.4771 ± 0.0964GeV−2

Odderon

∆O 0.19200 ± 0.0025
cO 0.0166 ± 0.0022
α′

O 0.048 ± 0.0027GeV−2

r2
O 0.1398 ± 0.0570GeV−2

ing performed such an analysis we found that there were
10 such points out of 43 in the p̄p total cross-section set
and the resulting χ2 was reduced by a factor of 2.6 from
1.83 to 0.71; there were 11 such points out of 79 in the pp
total cross-section set and the resulting χ2 was reduced
by a factor of 2.9 from 1.06 to 0.36; there were 14 such
points out of 62 in the pp ρ set and the resulting χ2 was
reduced by a factor of 3.5 from 1.52 to 0.43, and in the p̄p
ρ set there were no such points.

The partial χ2 may be found in Table 3.
Some of these χ2s are high (for instance, those for dif-

ferential cross-sections at s1/2 = 53, 630 GeV). This re-
flects the fact that we did not make use of systematical
errors for these sets of data which can be as high as 30%.

4 Conclusion and discussion

Above we have developed a model which is based on the
general argument of multiplicity of the pomeron Regge
poles in the eikonal. The present model shows a very good
description of the available data for all momenta (0.01 ≤
|t| ≤ 14.GeV2) and energies (8. ≤ s1/2 ≤ 1800.GeV); we
find that χ2/d.o.f. = 2.60.

The model predicts the appearance of two dips in the
differential cross-section which will be measured at LHC,
see Fig. 13, and this prediction is stable in the sense that
all two models with two and three pomeron contributions
predict the same behavior of the differential cross-section
with two dips. These dips are to appear in the region t1 �
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Fig. 6. Total cross-sections of pp scattering (hollow circles)
and p̄p scattering (full circles) and curves corresponding to
their description in the three pomeron model
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Fig. 7. Elastic cross-sections of pp scattering (hollow circles)
and p̄p scattering (full circles) and curves corresponding to
their description in the three pomeron model. These sets of
data are not included in the fit

Table 3. Partial χ2

Set of data Number of χ2/ntot
points, ntot

1 σp̄p
total 33 0.7167

2 σpp
total 68 0.3617

3 ρp̄p 11 0.6086
4 ρpp 48 0.4326
5 dσ/dtp̄p,

√
s = 31.GeV 22 3.3688

6 dσ/dtp̄p,
√

s = 53.GeV 52 8.5447
7 dσ/dtp̄p,

√
s = 62.GeV 23 1.8524

8 dσ/dtp̄p,
√

s = 546.GeV 78 3.8425
9 dσ/dtp̄p,

√
s = 630.GeV 19 9.9273

10 dσ/dtp̄p,
√

s = 1800.GeV 51 1.3741
11 dσ/dtpp,

√
s = 23.5GeV 105 2.2491

12 dσ/dtpp,
√

s = 27.43GeV 39 1.8929
13 dσ/dtpp,

√
s = 30.7GeV 92 4.4559

14 dσ/dtpp,
√

s = 44.64GeV 97 1.5748
15 dσ/dtpp,

√
s = 52.8GeV 93 2.0956

16 dσ/dtpp,
√

s = 62.GeV 151 2.4272

Number of parameters Total number χ2/d.o.f.
of points

20 982 2.6031

−0.5 GeV2 and t2 � −2.5 GeV2 which is in agreement
with other predictions [6,15].

In the high |t| domain the model shows predominance
of the odderon contribution and its interference with the
pomeron3 contribution, and this predominance of the odd-

-0.4

-0.2

0

0.2

0.4

1 10 10
2

10
3

10
4

√s
—

 (GeV)

ρ

pp
–

pp

☞

LHC

☞

☞

RHIC

- predictions of the model

Fig. 8. Ratios of the real to the imaginary part of the for-
ward pp scattering amplitude (hollow circles) and p̄p scatter-
ing amplitude (full circles) and curves corresponding to their
description in the three pomeron model

eron is in agreement with the model of [16] based on as-
sumptions different from ours.

We predict the following values of the total cross-sec-
tion, elastic cross-section, and the ratio of real to imagi-
nary part of the amplitude for the LHC:
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√
s = 14.TeV,

σpp
tot = 106.73 mb+7.56mb−8.50mb,

σpp
elastic = 29.19 mb+3.58mb−2.83mb,

ρpp = 0.1378+0.0042−0.0061. (17)

Predictions for RHIC are
√

s = 100.GeV,

σpp
tot = 45.96 mb+1.41mb−1.38mb,

σpp
elastic = 8.40 mb+0.34mb−0.32mb,

ρpp = 0.0962+0.0032−0.0032; (18)

√
s = 500.GeV,

σpp
tot = 59.05 mb+2.94mb−3.10mb,

σpp
elastic = 12.29 mb+0.79mb−0.76mb,

ρpp = 0.1327+0.0052−0.0071. (19)

The parameters of the pomeron trajectories are

α(0)P1 = 1.058, α′(0)P1 = 0.560 GeV−2;

α(0)P2 = 1.167, α′(0)P2 = 0.273 GeV−2;

α(0)P3 = 1.203, α′(0)P3 = 0.094 GeV−2. (20)

Their coupling constants obey the following inequality:

cP1 > cP2 > cP3 . (21)

The intercepts and slopes obey the following inequali-
ties:

∆P1 < ∆P2 < ∆P3

α′
P1

(0) > α′
P2

(0) > α′
P3

(0), (22)

i.e. the higher the intercept is, the lower is the slope. In
other terms the pomeron with higher intercept is “harder”
in the sense that it is associated with shorter distances
defined by the slope. We also observe an interesting fea-
ture: the product of the intercept and the slope is ap-
proximately the same for all the pomerons, ∆ · α′(0) �
0.040 ± 0.0009 GeV−2. This is seen in Fig. 14. This con-
stant seems surprisingly universal if compared with the
products of other reggeon parameters used in this model
(Fig. 15). At present we have no clear understanding of
this universality.

We can only remind the reader that the high energy
asymptotic behaviors of the total and elastic cross-sections
in the Regge-eikonal approach have the following form:

σtot(s)|s→∞ → 8πα′
P(0)∆P ln2(s/s0),

σelastic(s)|s→∞ → 4πα′
P(0)∆P ln2(s/s0), (23)

and the constant α′
P
(0)∆P GeV−2 (P stands for the right-

most singularity of the eikonal function in the J-plane) de-
fines a universal (independent on colliding beams) asymp-
totic behavior.

It is interesting to enlist the following characteristic
properties of the pomerons used in this paper.

The first of the pomerons (“pomeron1”) possesses the
properties that we expect from the string picture [17] of
reggeons, i.e. α′(0)P = (1/2)α′(0)f = 0.42 GeV−2 and in-
deed α′(0)P1 = 0.559 ± 0.078 GeV−2.

The second pomeron (“pomeron2”) is close to what is
called the “supercritical pomeron” with the slope
α′(0)P2 = 0.273 ± 0.005 GeV−2 close to its “world” value
α′(0)P � 0.25 GeV−2.

The third pomeron (“pomeron3”) is reminiscent of
what is known as a “hard” (or perturbative QCD)
pomeron. Its parameters (α(0)P3 = 1.203, α′(0)P3 = 0.094
GeV−2) are close to the calculated parameters of the per-
turbative pomeron, which arise from the summation of
reggeized gluon ladders and BFKL equation [18]:
α(0)BFKL

P
� 1.2, α′(0)BFKL

P
∼ 0.GeV−2. The fact that

a “hard” pomeron arises in a presumably “soft” frame-
work may seem quite unexpected. However we are not par-
ticularly inclined to identify straightforwardly our “hard
pomeron” with that which is the subject of perturbative
QCD studies.

The odderon has the following parameters: α(0)O =
1.192, α′(0)O = 0.048 GeV−2 in agreement with the uni-
tarity constraints (15). The odderon intercept is positive
and close to that of pomeron3. The slope is almost zero.
The coupling is so small that only high-t data may be
sensible to the odderon contribution.

Assuming that one can neglect the non-linearities of
the Regge trajectories and making use of the simple
parametrization

α(m2) = α(0) + α′(0) · m2, (24)
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we can try to estimate the corresponding spectroscopic
content of our model.

Then Reα(m2) = J , where J is an integer number
corresponding to the spin of the particle which we should
find lying on the trajectory.

The trajectories are depicted in Fig. 16. The C+ reg-
geon trajectory is in fact a combination of two families of
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☞ Pomeron3

☞ Odderon

Fig. 16. Regge trajectories of secondary reggeons, three
pomerons and the odderon

mesons f and a2. The C− reggeon trajectory is a com-
bination of two families of mesons ω and ρ. As is seen,
the secondary reggeon trajectories fairly well describe the
spectrum of mesons.

Among the mesons with appropriate quantum num-
bers there exist two that fit the pomeron trajectory (0+
J++): f2(1810) 0+2++ with mass m = 1815±12 MeV and
X(1900) 0+2++ with mass m = 1926 ± 12 MeV. One of
them is supposed to be on the pomeron2 trajectory.

Returning to our “polypomeron” hypothesis it is fairly
natural to ask: what happens if one admits a fourth etc.
pomeron? Is there some optimum in the number of “rel-
evant” pomerons above which the quality of description
is not improved much? And, finally, what is the underly-
ing physics of such a construction? We hope very much to
be able to answer at least some of these questions in the
nearest future.
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