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A short survey of the role of unitarity for hard diffraction cross sections is given. 

l Unitarity of the S-matrix which stems from 
the postulate of asymptotic completeness 
(see e.g. [l]) refers to asymptotic states, 
representing physical particles. In quan- 
tum field-theoretic terms it means that one 
deals with on-shell, truncated Green func- 
tions. Unitarity is tightly related to (but 
not exhausted by) probabilistic interpreta- 
tion of the scattering and production ampli- 
tudes, and effectively prevents these ampli- 
tudes from too fast growth with energy [2]. 

Hard processes in general, and hard diffrac- 
tion in particular, are often related to off- 
shell amplitudes. Can unitarity, seemingly 
on-shell property, lead to limitations in this 
case also? In fact, unitarity of the S- 
matrix, when considered in the axiomatic 
framework, is assumed to hold off mass 
shell [3], thereof, e.g., the optical theorem 
holds when “external” particles are virtual. 

However the bounds which were proven for 
the on-shell case cannot be derived for more 

general off-shell case. 

This leads, in particular, to a possibility of 
a much faster rise with energy than in the 
on-shell case [4]. 

l In this talk we limit ourselves by consider- 
ation of deeply inelastic scattering (DIS) at 
small 2, when it is believed to have mostly 
diffractive character. 

In fact the most characteristic feature of a 
diffractive process is a diffractive pattern of 
the scattered waves. In high-energy colli- 
sions there is a related feature, i.e. a rapid- 
ity gap between diffractively scattered (ex- 
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cited, produced) final states. Nonetheless 
only the study of the diffractive pattern can 
give us as information about global proper- 
ties (size, shape) of the scatterer (“interac- 
tion region”). From intuitive considerations 
one can think that for off-shell scattering 
the interaction radius should decrease with 
growth of virtuality. 

What is the role of unitarity? When ask- 
ing such a question we mean the following. 
If one takes some “bare” or “Born” am- 
plitude which is deduced from some sim- 
ple arguments (say, Regge pole) it often 
violates unitarity or its consequences (e.g. 
Froissart-Martin (FM) bound). This is not 
the reason to abandon such a “wrong” am- 
plitude which is considered to be very good 
in many other respects. The remedy is 
“unitarization” , i.e. some infinite summa- 
tion of the “bare” amplitude which yields 
a new, good amplitude respecting unitarity 
etc. The most known examples are eikonal 
and U-matrix representations. 

Discovery of the fast growth of DIS cross- 
sections at HERA exacerbated the quest of 
possible unitarity-driven upper bounds. 

Such bounds were obtained (see e.g [5]) 
but at a price, after making serious extra 
assumptions which deprive the results of 
rigour and generality of the FM theorem. 

However the framework of general princi- 
ples of quantum field theory seem to fairly 
admit power-like growth of the “off-shell” 
cross-sections. Extended Regge-eikonal just 
realizes this possibility in a concrete form. 
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It is interesting to note that cross-sections 

of exclusive (binary) deeply virtual pro- 
cesses do not exceed the FM limit (log2 s), 
while the corresponding total cross-sections 
grow as a power of energy [6]. It means that 
at extremely high s and Q2 “unitarity ef- 
fects” for total cross-sections are relatively 
negligible, while they are 100% important 
for binary exclusive cross-sections. 

A natural interpretation of this phe- 
nomenon is that at high Q2 the role of mul- 
tiple production grows in full accordance 
whit ref. [7]. 

We still lack the results concerning angular 
distribution of final particles in the binary 
deeply virtual exclusive processes. At the 
moment we can only mention the average 
impact parameter 

< b2 > (s, Q2) - log2 s/ logQ2. 

We see that the transverse interaction re- 
gion grows asymptotically with energy (fea- 
ture familiar from on-shell hadron-hadron 
processes) and shrinks with virtuality, Q2, 
but slower. 

At first sight it seems to mean that at equal 
c.m.s. energies the off-shell diffractive pat- 
tern is shallower and has more wide forward 
peak. But at realistic s and Q2 the pic- 
ture can be much more complicated. We 
have to stress that up to now no sign of a 
dip is seen in the angular distribution of ex- 
clusively produced vector mesons at HERA. 
One could take this as an evidence in favour 
of a Q2-induced spread of the diffractive 
pattern. 

The last subject I want to touch is the case 
when in capacity of a hard scale we take 
not the virtuality but the “compactification 

radius”, R,, assuming in accordance with 
newest ideas that our space-time has more 
than four dimensions, and that extra di- 
mensions are somehow compactified. What 
is the role of a hard scale, R,, in high en- 
ergy behaviour? It appears that this role is 

quite insignificant. At least for the upper 

bound. One can show [8], that the com- 
pactification radius enters the upper bound 
(which is FM-like) quite harmfully, and, 
with a proper normalization, peacefully dis- 
appears in the zero limit bringing us back 
to the usual Minkowsky space-time and the 
FM bound. It is likely that influence of R, 
is more dramatic for high momentum trans- 
fers. 

As a conclusion I have no much to say. 

1. Effects of fast growth of DIS cross-section 
discovered at HERA remain unexplained. 

2. Unitarity does not limit this growth too 
stringently. 

I express my deep gratitude to organizers of 
the magnificent workshop “Diffraction 2000” in 
Cetraro, especially to Roberto Fiore, Alessandro 
Papa, and Enrico Predazzi, for their kind hospi- 
tality and valuable support. 
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