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Abstract

The gravity effects in high-energy scattering, described by a four-
dimensional eikonal amplitude related to gravireggeons induced by
compact extra dimensions are studied. It is demonstrated that the
real part of the eikonal (with a massless mode subtracted) dominates
its imaginary part at both small and large impact parameters, in con-
trast to the usual case of hadronic high-energy behavior. The real
part of the scattering amplitude exhibits an exponential falloff at large
momentum transfer, similar to that of the imaginary part of the am-
plitude.
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1 Introduction

In our previous paper [1], we considered the model with compact extra spa-
tial dimensions [2] and calculated the contribution of Kaluza-Klein (KK)
gravireggeons into the inelastic cross section of high energy scattering of four-
dimensional SM particles. In particular, an expression for the imaginary part
of the eikonal has been derived. The results were applied to cosmic neutrino
gravitational interaction with atmospheric nucleons [1].

In the present paper, we study quantum gravity effects related to the extra
dimensions in the real part of the eikonal. As in Ref. [1], the SM particles are
confined on a four-dimensional brane, while the gravity lives in all D = d+4
dimensions. The extra dimensions are compactified with a radius Rc. Thus,
a fundamental mass scale, MD, is related to the Planck scale by a relation
M2

P l = Md+2
D (2πRc)

d [2].
In the next Section we consider a case of one extra dimensions. The

generalization to more than one extra dimension is given in Section 3. The
conclusions and discussions are given in the last Section. Some technical
details of our calculations are collected in Appendices.

2 One extra dimension (d = 1)

For the sake of simplicity and for pedagogical reasons, we will consider first
one extra dimension. The general case (d > 2) will be analyzed in the next
section. In the gravireggeon model, eikonal is given by the sum of reggeized
KK gravitons in the t-channel [1]:

χ(s, b) =
1

8πs

0
∫

−∞

dt Jo(b
√
−t)

∞
∑

n=−∞

AB(s, t, n), (1)

where
√

s is an invariant energy, and the Born amplitude is of the form

AB(s, t, n) = GN

[

i − cot
π

2
αn(t)

]

α′
g β2

n(t)

(

s

s0

)αn(t)

. (2)

Here n is a KK-number. The value n = 0 corresponds to usual massless
graviton.
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Both massless graviton and its KK massive excitations lie on linear Regge
trajectories:

α(tD) = α(0) + α′
g tD, (3)

where tD denotes D-dimensional momentum transfer. Since the extra di-
mension is compact with the radius Rc, we come to splitting of the Regge
trajectory (3) into a leading vacuum trajectory,

α0(t) ≡ αgrav(t) = 2 + α′
gt, (4)

and infinite sequence of secondary, “KK-charged”, gravireggeons [3]:

αn(t) = 2 −
α′

g

R2
c

n2 + α′
gt, n > 1. (5)

The string theory implies that the slope of the gravireggeon trajectory is
universal for all s, and α′

g = 1/M2
s , where Ms is a string scale.

In ref. [1] the imaginary part of the eikonal (1) has been calculated. In
the present paper we consider the real part of the eikonal. From Eqs. (1),
(2) and (5) we obtain (q2

⊥ = −t):

Re χ(s, b) = GNs
α′

g

8

∞
∫

0

q⊥dq⊥ J0(q⊥b) e−q2
⊥R2

g(s)

×
∞

∑

n=−∞

cot
[πα′

g

2

(

− t +
n2

R2
c

)]

e−n2R2
g(s)/R2

c , (6)

where

Rg(s) =
√

α′
g ln(s/s0) (7)

is a gravitational slope (dynamical radius). Formally, there exist poles in the
sum in Eq. (6) at negative values of αn(t). It is demonstrated in Appendix A
that these tachyon poles are fictitious singularities, and, thus, they will not
be taken into account in our calculations.

In what follows, we will assume that t lies in the physical region, t < 0,
and

α′
g |t| ≪ 1. (8)

It is equivalent to |t| ≪ M2
s , where the string scale Ms is of order 1 TeV.

The sum in (6) is effectively cut from above, n . nmax = Rc/Rg(s). It means
that α′

gn
2/R2

c . [ln(s/s0)]
−1 ≪ 1 in (6).
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Let us define Re χ̌(s, b) to be the real part of the eikonal with a pole term
(corresponding to n = 0 in (6)) subtracted. With all mentioned above, it
can be written as follows:1

Re χ̃(s, b) = GNR2
c s

1

2π

∞
∫

0

q⊥dq⊥ J0(q⊥b) e−q2
⊥R2

g(s)

×
∞

∑

n=1

1

n2 + R2
c |t|

e−n2R2
g(s)/R2

c . (9)

One can see that ε(s) = Rg(s)/Rc ≪ 1 even at ultra-high (cosmic) ener-
gies s. Indeed, a magnitude of ε(s) is defined by the ratio ∼ Mc/Ms, with a
compactification mass scale, Mc = R−1

c , varying from 10−3 eV for d = 2 to
10 MeV for d = 6. So, ε(s) is taken to be a small parameter everywhere in
our calculations.

Let us consider two distinct regions of the momentum transfer |t|. For
0 6 |t| ≪ R−2

c , the leading term looks like

I1 =

∞
∑

n=1

1

n2 + R2
c |t|

e−n2R2
g(s)/R2

c

∣

∣

∣

|t|R2
c≪1

≃ π2

6
− π4

90
R2

c |t| + O(ε(s)). (10)

At large |t| (R−2
c ≪ |t| < ∞), we will consider two subregions. If the mo-

mentum transfer runs the subregion R−2
c ≪ |t| ≪ R−2

g (s), then

I1 =

∞
∑

n=1

1

n2 + R2
c |t|

e−n2R2
g(s)/R2

c

∣

∣

∣

∣

∣

|t|R2
c≫1

|t|R2
g(s)≪1

≃ π

2Rc

√

|t|
− 1

R2
c |t|

+O(ε(s)). (11)

Note, the leading terms in (10) and (11) match at Rc

√

|t| = a1 = 3/π. At
very large values of |t|, namely, for R−2

g (s) . |t| < ∞, the sum in (11) has
the asymptotics

I1

∣

∣

∣

|t|R2
g(s)≫1

≃ π

2RcRg(s)|t|
. (12)

It can be shown that a contribution from the region R−2
g (s) . |t| < ∞ is

suppressed as compared to the region R−2
c . |t| < ∞ by the factor ∼ ε(s)

1Taking into account that effectively |αn(t) − 2| ≪ 1.
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(for large impact parameter which we are interested in). Thus, we can write
(using table integrals from [5]):

Re χ̃(s, b) ≃ GNR2
cs

[ π

12

a1R−1
c

∫

0

q⊥dq⊥ J0(q⊥b) e−q2
⊥R2

g(s)

+
1

4Rc

∞
∫

a1R−1
c

dq⊥ J0(q⊥b) e−q2
⊥R2

g(s)
]

≃ GNRcs

4

{

1

b
J1

(

a1b

Rc

)

+
a1

Rc

×
[ √

πRc

2a1Rg(s)
Φ

(

1

2
, 1; − b2

4R2
g(s)

)

− 1F2

(

1

2
; 1,

3

2
; −a2

1b
2

4R2
c

)]}

, (13)

where Φ(a; b; z) is the confluent hypergeometric function,2 and 1F2(a; b, c; z)
is the generalized hypergeometric function [6]. For b ≫ R2

c/Rg(s) ≫ Rc, we
get the following asymptotics [6]:

√
πRc

2a1Rg(s)
Φ

(

1

2
, 1; − b2

4R2
g(s)

)
∣

∣

∣

∣

bε(s)≫Rc

≃ Rc

a1b

[

1 + O

(

R2
g(s)

b2

)

]

, (14)

and3

1F2

(

1

2
; 1,

3

2
; −a2

1b
2

4R2
c

)
∣

∣

∣

∣

b≫Rc

≃ Rc

a1b

[

1 + J1

(

a1b

Rc

)

+
Rc

a1b
J2

(

a1b

Rc

)

]

. (15)

Here J1(z) and J2(z) are the Bessel functions. As a result, we obtain from
Eqs. (13) and (14)-(15):

Reχ̃(s, b)
∣

∣

∣

b≫Rc

≃ −GNs
π

12

(

Rc

b

)2

J2

(

a1b

Rc

)

, (16)

where the constant a1 is defined after formula (11).
At zero impact parameters, one has

Re χ̃(s, b = 0) ∼ GNs
Rc

Rg(s)
. (17)

2The confluent hypergeometric function Φ(1/2, 1; z) can be related to the modified
Bessel function I0(z/2).

3The generalized hypergeometric function 1F2(1/2; 1, 3/2; −z) can be defined by the
integral of the Bessel function J0(z). As a result, its asymptotics has oscillations.
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On the other hand, the imaginary part of the eikonal was found to be
(for d = 1) [1]

Im χ(s, b) =
√

π GNs
Rc

Rg(s)

[

ln(s/s0)
]−1

exp[−b2/4R2
g(s)]. (18)

So, the real part of the eikonal dominates the imaginary part at zero impact
parameter,4 Re χ̃(s, 0)/Im χ̃(s, 0) ∼ ln s, and it has a power-like behavior
(with oscillations) at b → ∞ (16), while the imaginary part decreases expo-
nentially at large b.

3 More than two extra dimensions (d > 2)

The expression for the real part of the eikonal (9) is easily generalized for
d > 2:

Re χ̃(s, b) = GNR2
cs

1

2π

∞
∫

0

q⊥dq⊥ J0(q⊥b) e−q2
⊥R2

g(s)

×
∞

∑

n=1

1

n2 + R2
c |t|

e−n2ε2(s)
∑

n2
1+n2

2+···n2
d−16n2

, (19)

where the notation n2 =
∑d

i n2
i is introduced. The main contribution to the

sum in the RHS of Eq. (19) comes from the region n2 ∼ (d − 2)/ε2(s) ≫ 1.
Thus, to estimate the sum in (n1, n2, . . . nd−1) analytically, we can replace
the sum by the integral:

Id =

∞
∑

n=1

1

n2 + R2
c |t|

e−n2ε2(s)
∑

n2
1+n2

2+···n2
d−16n2

→
∞

∑

n=1

1

n2 + R2
c |t|

e−n2ε2(s)

∫

· · ·
∫

~x26n2

d~x

=
π(d−1)/2

Γ
(

d+1
2

)

∞
∑

n=1

nd−1

n2 + R2
c |t|

e−n2ε2(s). (20)

4We remind that the singular term was subtracted in Re χ̃.
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As in the previous section, we consider two regions of the momentum
transfer. At |t| ≪ R−2

c we obtain (up to corrections O(R2
c |t|) and O(ε2(s))):

Id ≃
∞

∑

n=1

1

n2
+

π(d−1)/2

Γ
(

d+1
2

)

∞
∑

n=1

1

n2 + R2
c |t|

(nd−1 − 1) e−n2ε2(s)

→ π

6
+

π(d−1)/2

2Γ
(

d+1
2

)

∞
∫

1

dz (zd/2−2 − z−3/2) e−zε2(s)

≃ π

6
+

π(d−1)/2

2Γ
(

d+1
2

)

[

Ψ
(

1,
d

2
; ε2(s)

)

− Ψ
(

1,
1

2
; ε2(s)

)

]

, (21)

where Ψ(a, b; z) is the confluent hypergeometric function,5 and we have re-
placed the sum in n by the integral.6 For d > 2, Eq. (21) results in

Id

∣

∣

∣

|t|R2
c≪1

≃ π(d−1)/2Γ
(

d
2
− 1

)

2Γ
(

d+1
2

)

(

1

ε(s)

)d−2

, (22)

neglecting insignificant terms O(ε(s)). Starting from Eq. (21), we come to
the asymptotics I1 ≃ π2/6, in accordance with Eq. (10).

Now let us consider the region R−2
c ≪ |t| < ∞. Then the quantity Id can

be cast in the form:

Id ≃ π(d−1)/2

2Γ
(

d+1
2

)

∞
∫

1

dz
zd/2−1

z + R2
c |t|

e−zε2(s)

≃ π(d−1)/2

2Γ
(

d+1
2

)

[

Γ
(d

2

)

(R2
c |t|)d/2−1 Ψ

(d

2
,

d

2
; R2

g(s)|t|
)

− 2

d

1

R2
c |t|

]

. (23)

For d > 2, we should consider separately two subregions. Namely, if the
momentum transfer is bounded by inequalities R−2

c ≪ |t| ≪ R−2
g (s), Eq. (23)

results in previously obtained asymptotics (22). At very large values of |t|,
such as R−2

g (s) ≪ |t| < ∞, one gets from (23):

Id

∣

∣

∣

|t|R2
c≫1

≃ π(d−1)/2Γ
(

d
2

)

2Γ
(

d+1
2

)

(

1

ε(s)

)d−2
1

R2
g(s)|t|

. (24)

5The functions Ψ(a, b; z) and the above mentioned function Φ(a, b; z) are different so-
lutions of the confluent hypergeometric equation.

6Note, for d = 1 this is justified only if |t|R2

c ≫ 1.
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For d = 1, the correct values of I1 (11), (12) are reproduced. The asymptotics
(23) and (24) match at |t| = a2R−1

g (s), where

a2 = (d − 2)/2. (25)

Thus, we get the following expression for the eikonal:

Re χ̃(s, b) ≃ GNs

[

Rc

Rg(s)

]d π(d−3)/2Γ
(

d
2

)

4Γ
(

d+1
2

)

×
[R2

g(s)

a2

aR−1
g (s)

∫

0

q⊥dq⊥ J0(q⊥b) e−q2
⊥R2

g(s) +

∞
∫

aR−1
g (s)

dq⊥
q⊥

J0(q⊥b) e−q2
⊥R2

g(s)
]

≡ GNs

[

Rc

Rg(s)

]d π(d−3)/2Γ
(

d
2

)

4Γ
(

d+1
2

)

[

I<

(

ab

Rg(s)

)

+ I>

(

ab

Rg(s)

)

]

. (26)

At small impact parameter, we get immediately from (26):

Re χ̃(s, b)
∣

∣

∣

b≪Rg(s)
= C(d) GDs α′−d/2

g

[

ln
( s

s0

)]−d/2

+ O

(

b2

R2
g(s)

)

, (27)

where C(d) is a constant depending on the number of the extra dimensions,
explicit form of which can be obtained from (26). The asymptotics of the real
part of the eikonal at large b is more complicated to analyze. For b ≫ Rg(s),
it is calculated in the Appendix B, and the leading term looks like

Re χ̃(s, b)
∣

∣

∣

b≫Rg(s)
≃ −GDs α′−d/2

g

e−a2
Γ
(

d
2

)

π(d+3)/22d+1a2Γ
(

d+1
2

)

[

ln
( s

s0

)]−d/2

×
(

Rg(s)

b

)2

J2

(

ab

Rg(s)

)

. (28)

The expression for the imaginary part of the eikonal for d > 1 was calcu-
lated in Ref. [1]:

Im χ(s, b) =
GDs α

′−d/2
g

πd/2−1

[

ln
( s

s0

)]−(1+d/2)

× exp[−b2/4R2
g(s)]. (29)
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As one can see from (27) and (29),

Re χ̃(s, 0)

Im χ(s, 0)
∼ ln s. (30)

Let us stress, we study the case when colliding particles are confined
on the 4-dimensional brane, with gravity living in all D dimensions. We see
that the real part of the eikonal in b-space has a power-like behavior in b with
oscillations, while the imaginary part decreases exponentially at b ≫ 2α′

g ln s.
Both depend on the Regge slope α′

g via the gravitational radius Rg(s) (7).7

Let us remind the asymptotic behavior of the eikonal function derived in
the framework of the string theory for the scattering of D-dimensional fields
in a flat space-time [10]:

χ
D
(s, b)

∣

∣

∣

b2≫α′ ln s
≃

(

bc

b

)d

+ iπ2 G
D

Ns α′−d/2

(π ln s)1+d/2
exp

(

− b2

4α′ ln s

)

, (31)

where bc = [2π−d/2Γ(d/2)G
D

Ns]1/d, G
D

N being the Newton constant in D flat
dimensions. Note, the real part of χ

D
(s, b) exhibits power-law falloff which

does not depend on the string tension α′ ≡ α′
g.

One can observe, taking into account the definition of the gravitational
radius Rg(s) (7), that the imaginary parts of χ(s, b) and χ

D
(s, b) coincide

at b ≫ α′
g ln s. As for the real part of the eikonal, Re χ̃(s, b) decreases as

a fixed (d-independent) power of b at b → ∞, contrary to (31). The scales
in the real parts (associated with the impact parameter b) are also different:
dynamical radius Rg(s) in our case, and bc ∼ (G

D

Ns)1/d in χ
D
(s, b) (31).

Because of the inequality Rg(s) ≪ Rc, our formulae contain the com-

pactification radius Rc only via D-dimensional coupling GD = M
−(2+d)
D =

GN(2πRc)
d. However, at extremely high energies, when the dynamical ra-

dius Rg(s) becomes comparable with (or larger than) Rc, the eikonal profile
in impact parameter space should “ feel” the size of the compact dimensions
Rc [1].

In this connection, let us mention the SM in a D-dimensional space-time
with compact extra dimensions, but without gravity [11]. In such a case, the
dynamical radius, R(s), is proportional to ln(s/s0)/

√
t0, where t0 denotes

the nearest (non-zero) singularity in the t-channel (for instance, t0 = m2
π, if

only strong interactions are taken into account).

7It does not take place, if colliding particles live in D dimensions [9].
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The expression for four-dimensional eikonal amplitude (in the presence
of d compact extra dimensions) looks like [1]:

A(s, t) = 2is

∫

d2b eiq⊥b
[

1 − eiχ(s,b)
]

. (32)

At not extreme energies, namely, for
√

s . MD ∼ Ms, we have inequalities
Re χ̃(s, b), Im χ(s, b) ≪ 1, and Eq. (32) is given by

Ã(s, t) ≃ 4πs

∞
∫

0

db b J0(q⊥b) [Re χ̃(s, b) + i Im χ(s, b)]

= ReÃ(s, t) + i Im A(s, t). (33)

The imaginary part of the scattering amplitude exhibits exponential falloff
at large |t|:

Im A(s, t) =
8 GDs2 α

′1−d/2
g

πd/2−2

[

ln
( s

s0

)]−d/2

exp
(

tα′
g ln(s/s0)

)

. (34)

As for the real part of the amplitude, we obtain the following behavior
(see Appendix C for details):

ReÃ(s, t) = GDs2 α′−d/2
g

Γ
(

d
2

)

2dπ(d+1)/2Γ
(

d+1
2

)

[

ln
( s

s0

)]−d/2

×



































α′
g ln(s/s0)

a2

[

2 +
α′

g ln(s/s0) t

a2

]

+
1

t

[

1 − exp
(

tα′
g ln(s/s0)

)]

(

0 < α′
g |t| < a2/ ln(s/s0)

)

1

−t
exp

(

tα′
g ln(s/s0)

)

(

α′
g |t| > a2/ ln(s/s0)

)

(35)

Note that Im A(s, t) ≪ Re Ã(s, t) in the kinematical region (8), in particular,

Re Ã(s, t)

Im A(s, t)

∣

∣

∣

∣

∣

t=0

∼ ln s,
Re Ã(s, t)

Im A(s, t)

∣

∣

∣

∣

∣

1≫α′
g |t|≫(ln s)−1

∼ 1

α′
g |t|

. (36)

The asymptotics of the amplitude at large |t| (35) is quite different from
the behavior of the eikonal amplitude in both the string theory [10] and in
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the model with Regge exchanges in D flat dimensions [9]:

A(s, t)
∣

∣

∣

|t|≫b−2
c

∼ G
D

Ns2 α′(1−d)/2
g |t|−(d+2)2/4(d+1) eiφD(t), (37)

where φD(t) ∼ |t|d/2(d+1), and bc is define after formula (31). Formula (35)
is also different from the asymptotic behavior of A(s, t) in the model with
compact extra dimensions, when non-reggeized KK graviton exchanges are
summed up [12]:

A(s, t)
∣

∣

∣

|t|R2
c≫1

∼ GDs2 α′(1−d)/2
g |t|−(d+2)/2(d+1) eiφD(t). (38)

It is worth to note that (38) decreases as a power of |t| (the latter be-
ing larger than −1 for d > 1), in spite of the fact that both amplitudes
describe the scattering of fields trapped on the brane. This can be under-
stood as follows. For non-reggeized exchanges [12], the sum in KK numbers
(n1, n2, . . . nd) contains no suppression factor exp[−n2R2

g(s)/R
2
c ], contrary to

our approach with the gravireggeon exchanges (19). The sum diverges and
needs a definition for d > 1. Usually, the sum is replaced by a d-dimensional
integral, which is calculated by using dimensional regularization. This pro-
cedure leads to the power-like falloff of the eikonal with d-depending power,
similar to the case when colliding fields are not confined to the brane, but
can propagate in the extra dimensions [10]. Moreover, the eikonal is pure
real in this scheme [12].

4 Conclusions

In the framework of the model with d extra compact dimensions, we have
calculated the quantum gravity effects related to the gravireggeon exchanges
in t-channel. For the scattering of the SM fields living on the 4-dimensional
brane, the real part of the eikonal (with the massless mode subtracted) is
estimated. It is shown that it decreases as a power of b (with oscillations) at
large values of the impact parameter b. This power does not depend on the
number of the extra dimensions d, contrary to the case when the colliding
fields are allowed to propagate in the bulk. The scale, associated with the
impact parameter b, is α′−1

g , while in the D-dimensional flat space-time the

corresponding scale is defined by (G
D

Ns)1/d, where G
D

N is the Newton constant
in D dimensions.
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The calculations complete our results on the imaginary part of the eikonal
obtained previously. In particular, it was shown that the imaginary parts of
the eikonal are the same for the case when colliding particles are confined
to the brane and when they propagate freely in extra dimensions. In the
present paper, we have also calculated the eikonal amplitude and have shown,
that both the real part of the amplitude and its imaginary part decreases
exponentially at large momentum transfer.

The real part of the amplitude dominates the imaginary part at zero
momentum transfer, in contrast to high-energy behavior of hadronic am-
plitudes (see, for instance, Ref. [13]). Note, however, that this result was
obtained in the region ln s ≪ R2

c/α
′
g. At asymptotical s, the inequality

|ReA(s, 0)|/|ImA(s, 0)| < const will be reproduced, provided the massless
mode is discarded in the eikonal.

Appendix A

The Sommerfeld-Watson transformation results in the following expression
for a contribution of the Regge trajectory α(t) to the amplitude [4]:

A(s, t)
∣

∣

∣

pole
= −16π2[2α(t) + 1]β(t)

×
[

1 + ξ exp(−iπα(t))

sin πα(t)
Pα(t)(−zt(s, t)) − ξ

2

π
Qα(t)(−zt(s, t))

]

.(A.1)

Here ξ is a signature of the trajectory, zt(s, t) is a cosine of a scattering angle
in the t-channel, β(t) is a residue of the Regge pole in a partial amplitude:

Aξ
l (t)

∣

∣

∣

l→α
≃ β(t)

l − α(t)
. (A.2)

We have omitted a background integral in (A.1) which is non-leading in
the high energy limit (−zt(s, t) ≫ 1). Note that second term in the RHS
of Eq. (A.1) is usually discarded, since it is also negligible at −zt(s, t) ≫
1. Nevertheless, it becomes important if we look for possible non-physical
singularities.

For even signature (ξ = +1), one gets the real part of the amplitude in

12



the form:8

ReA(s, t)
∣

∣

∣

pole
= −16π2(2α + 1) β

[

1 + cos πα

sin πα
Pα(−z) − 2

π
Qα(−z)

]

, (A.3)

where simplified notations α ≡ α(t), β ≡ β(t), and z ≡ zt(s, t) are intro-
duced. In order to analyze singularities of the amplitude in α, it is conve-
nient to represent the expression in the RHS of Eq. (A.3) via hypergeometric
functions [6]:

1 + cos πα

sin πα
Pα(−z) − 2

π
Qα(−z) = − π−1/2

cos πα

[

(−2z)α (1 + cosπα) Γ(−α)

Γ(−α + 1/2)

× 2F1

(

−α

2
, −α

2
+

1

2
; −α

2
+ 1;

1

z2

)

− (−2z)−α−1 (1 − cos πα) Γ(α + 1)

Γ(α + 3/2)

× 2F1

(

α

2
+

1

2
,

α

2
+ 1;

α

2
+

3

2
;

1

z2

)

]

. (A.4)

This expression is symmetric under replacement α → −α− 1. Note that the
ratio 2F1(a, b; c; z)/Γ(c) has neither singularities nor zeros in c.

It follows from (A.4) that the amplitude has two sets of simple poles:
physical singularities at α(t) = 2m, m = 0, 1 . . ., and tachyon poles at α(t) =
−(2n + 1), n = 0, 1 . . .. If the term (2/π) Qα(−z) is disregarded in (A.3),
the tachyon poles are shifted to the points α(t) = −2n. Notice, there are
no poles in the RHS of (A.4) at half-integer α, since an expression in square
brackets tends to zero and cancels zeros of a function cosπα at these points.

Let us demonstrate that the tachyon poles are fictitious ones. In order to
do this, we will consider the Mandelstam-Sommerfeld-Watson transformation
which is based on using of the Legendre function of the second kind [4]. By
disregarding all the terms but the pole contribution and the sum in positive
angular momenta, we get:

A′(s, t) = 16π [1 + ξ exp(iπα(t))]
[

(2α(t) + 1)β(t)
Q−α(t)−1(−zt(s, t))

cos πα(t)

− 1

π

∞
∑

l=1

(−1)l−1(2l) Aξ
l−1/2(t) Ql−1/2(−zt(s, t))

]

. (A.5)

8Note that ImPl(z) = ImQl(z) = 0 at z > 1, for any real l [6].
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In particular, the contribution of the Regge trajectory (with ξ = +1) into
the real part of the amplitude,

ReA′(s, t)
∣

∣

∣

pole
= 16π(2α + 1) β

1 + cos πα

cos πα
Q−α−1(−z), (A.6)

reveals the same physical singularities (at α(t) = 2m, m = 0, 1 . . .), as it can
be easily seen from the relation [6]

Q−α−1(−z) = π1/2 (−2z)α Γ(−α)

Γ(−α + 1/2)

× 2F1

(

−α

2
, −α

2
+

1

2
; −α

2
+ 1;

1

z2

)

. (A.7)

The zeros of the function cos πα in Eq. (A.5) can result in singularities
of ReA′(s, t) at half-integer α. However, the poles of (cos πα)−1 at α(t) =
n + 1/2, with n = 0, 1 . . ., and corresponding poles of the partial amplitudes
in the sum in Eq. (A.5) cancel out. To see this, one should use the formula

Ql−1/2(z) = Q−l−1/2(z), (A.8)

valid for any integer l [6]. Only tachyon poles, α(t) = −(n+1/2), n = 0, 1 . . .,
survive. Thus, we see that positions of the tachyon poles are different if
we use Mandelstam-Sommerfeld-Watson transformation instead of standard
Sommerfeld-Watson transformation. Moreover, the singularities at α(t) =
−(n + 1/2) do not appear in the amplitude as well, if so-called Mandelstam
symmetry of the partial amplitudes with respect to the point l = −1/2 is
assumed:9

Aξ
l−1/2(t) = Aξ

−l−1/2(t). (A.9)

All said above indicates fictitious character of the singularities at negative
values of α(t).

Appendix B

In this Appendix we will calculate the asymptotics of the RHS of Eq. (26) at
large value of variable c = ab/Rg(s), where b is the impact parameter, and a

9From the Gribov-Froissart representation, the Mandelstam symmetry follows for all
Aξ

l (t) with l > N , where N is a number of subtractions in a dispersion relation for the
amplitude, due to the symmetry property of Ql(z) (A.8). The symmetry takes place in a
potential scattering (see [4] for more details).
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is defined in the text (25). The first quantity under consideration, I<(c), is
represented by the integral

I<(c) =

1
∫

0

dz z J0(cz) e−a2z2

. (B.1)

By using well-known relation between Bessel functions [7],

zνJν−1(cz) =
1

c

d

dz

[

zνJν(cz)
]

, (B.2)

one can easily obtains from (B.1):

I<(c) =
e−a2

c

N
∑

m=0

(

2a2

c

)m

Jm+1(c) +

(

2a2

c

)N+1
1

∫

0

dz zN+2 JN+1(cz) e−a2z2

=
e−a2

c

N
∑

m=0

(

2a2

c

)m

Jm+1(c) + o(c−N−2) (B.3)

for any integer N > 0. Thus, we obtain the leading asymptotic terms:

I<(c)|c≫1 =
e−a2

c

[

J1(c) +
2a2

c
J2(c)

]

+ o(c−3). (B.4)

Note, the sum in (B.3) converges at N → ∞ for any fixed c.
The quantity I>(c) is represented by the integral

I>(c) =

∞
∫

1

dz

z
J0(cz) e−a2z2

. (B.5)

In order to estimate I>(c) at large c, it is convenient to recast it in the form:

I>(c) = lim
α→0

[

∞
∫

0

dzzα−1J0(cz) e−a2z2 −
1

∫

0

dzzα−1J0(cz) e−a2z2
]

= lim
α→0

[

∞
∫

0

dzzα−1J0(cz) e−a2z2 −
1

∫

0

dzzα−1J0(cz)
]

−
∞

∑

k=1

(−1)k a2k

k!

1
∫

0

dzz2k−1J0(cz). (B.6)
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By using table integrals from [5], we get (up to power corrections in α):

∞
∫

0

dzzα−1J0(cz) e−a2z2

∣

∣

∣

∣

∣

∣

α→0

≃ a−α

2

[

Γ
(α

2

)

− γ − ln
( c2

4a2

)

+ Ei
(

− c2

4a2

)]

,

(B.7)
where γ is the Euler constant, and Ei(−z) is the exponential integral. Anal-
ogously, one gets [5]:

1
∫

0

dzzα−1J0(cz)

∣

∣

∣

∣

∣

∣

α→0

≃ 1

2

[

Γ
(α

2

)

− γ − ln
(c2

4

)]

−
∞

∫

c

dz

z
J0(z). (B.8)

Eqs. (B.6)-(B.8) result in the expression

I>(c) =
1

2
Ei

(

− c2

4a2

)

+

∞
∫

c

dz

z
J0(z)−

∞
∑

k=1

(−1)k a2k

k!

1
∫

0

dzz2k−1 J0(cz). (B.9)

By taking into account Eq. (B.2), we get (for N > 0):

∞
∫

c

dz

z
J0(z) = −1

c

N
∑

m=0

m!

(

2

c

)m

Jm+1(c)

+ 2N+1 (N + 1)!

∞
∫

c

dz

zN+2
JN+1(z). (B.10)

A series, which arises in (B.10) in the limit N → ∞, does not converge.
To see this, one should use an asymptotics of the Gamma-function [6],

Γ(m)
∣

∣

∣

m→∞
≃ exp

[(

m − 1

2

)

ln m − m +
1

2
ln(2π)

]

, (B.11)

and an asymptotics of the Bessel function at large value of its index (at fixed
c) [8],

Jm(c)
∣

∣

∣

m→∞
≃ exp

{

m
[

1 + ln
( c

2

)]

−
(

m +
1

2

)

ln m − 1

2
ln(2π)

}

. (B.12)

Then one concludes that the m-th term in the series under consideration
tends to (2m)−1 at m → ∞. So, the sum in (B.10) is an asymptotic one at
large N .
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As a result, we have (for N > 0):

∞
∑

k=1

(−1)k a2k

k!

1
∫

0

dzz2k−1 J0(cz) =
e−a2 − 1

c
J1(c)

+

∞
∑

k=1

(−1)k a2k

k

[1

c

N
∑

m=1

(−1)m 1

Γ(k − m)

(

2

c

)m

Jm+1(c)

− (−1)N

(

2

c

)N+1
1

Γ(k − N − 1)

1
∫

0

dzz2k−N−2 JN+1(cz)
]

. (B.13)

Taking into account that 1/Γ(−n) = 0 for any non-negative integer n, we
come to the formula

∞
∑

k=1

(−1)k a2k

k!

1
∫

0

dzz2k−1 J0(cz) =
e−a2 − 1

c
J1(c)

− 1

c

N
∑

m=1

(

2

c

)m

γ(m + 1, a2) Jm+1(c)

−
(

2

c

)N+1
1

∫

0

dzz−N−2 γ(N + 2, z2a2) JN+1(cz)
]

. (B.14)

Here γ(a, x) is the incomplete Gamma-function. At N → ∞, the sum in the
RHS of Eq. (B.14) converges. It can be easily shown if we use the expansion
of the incomplete Gamma-function, γ(m + 1, 1) =

∑m
k=0 [k!(k + m + 1)]−1,

and use (B.12).
It follows from Eqs. (B.9), (B.10) and (B.14) that10

I>(c) = −e−a2

c
J1(c) −

1

c

N
∑

m=1

(

2

c

)m

m! Jm+1(c)

+
1

c

∞
∑

m=1

(

2

c

)m

γ(m + 1, a2) Jm+1(c) + o(c−N−2), (B.15)

10Notice, the exponetial integral Ei(−c2/4a2) decreases exponentially at c → ∞.
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and we obtain the leading asymptotic terms:

I>(c)
∣

∣

∣

c≫1
= −e−a2

c

[

J1(c) +
2(1 + a2)

c
J2(c)

]

+ o(c−3). (B.16)

Notice that the leading terms in (B.4) and (B.16) (proportional to J1(c))
cancel out. Thus, we get

[I<(c) + I>(c)]
∣

∣

∣

c≫1
≃ −2e−a2

c2
J2(c), (B.17)

and we arrive at the asymptotics presented in the text (28). The complete
asymptotic expansion of the functions I<(c) and I>(c) can be obtained if
desired from Eqs. (B.3) and (B.15), respectively.

Appendix C

In order to find ReÃ(s, t), we need to calculate the integral

M =

∞
∫

0

db b J0(q⊥b)
[

I<

(

ab

Rg(s)

)

+ I>

(

ab

Rg(s)

)

]

. (C.1)

By taking into account formulae from the Appendix B, one can get:

I<(c) + I>(c) = −2e−a2

c2
J2(c) +

(

2a2

c

)2
1

∫

0

dz z3 J2(cz) e−a2z2

+

(

2

c

)2
1

∫

0

dz

z3
γ(3, z2a2) J2(cz)

+ 8

∞
∫

c

dz

z3
J2(z) +

1

2
Ei

(

− c2

4a2

)

, (C.2)

where again we have defined c = ab/Rg(s).
By the use of Eq. (B.2) and other relation between the Bessel functions [7],

d

dz

[

z−νJν(cz)
]

= −cz−νJν+1(z), (C.3)
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the following formula can be derived (α, β > 0):11

x
∫

dz

zµ
Jν(αz)Jν+µ+1(βz) =

1

βxµ

∞
∑

m=1

(β

α

)m

Jν+m(αx)Jν+µ+m(βx) + const.

(C.4)
In particular, one obtains (for A, q⊥ > 0):

∞
∫

0

db

b
J0(q⊥b) J2(Ab)

=
1

A b

∞
∑

m=1

( A

q⊥

)m

Jm

(

q⊥b
)

Jm+1(Ab)
∣

∣

∣

b=∞

b=0
= 0. (C.5)

Thus, first three terms in the RHS of Eq. (C.2) gives zero after the integration
in variable b in (C.1).

The next to the last term in Eq. (C.2) results in

8

∞
∫

0

db b J0(q⊥b)

∞
∫

c

dz

z3
J2(z)

=
8Rg(s)

aq⊥

∞
∫

0

dz

z2
J2(z) J1

[Rg(s)q⊥
a

z
]

. (C.6)

The integral in (C.6) is a table one (see [5]):
∞

∫

0

dz

z2
J2(z) J1

[Rg(s)q⊥
a

z
]

=



















Rg(s)q⊥
8a

[

2 −
R2

g(s) q2
⊥

a2

]

, for |t| < a2R−2
g (s)

a

8Rg(s) q⊥
, for |t| > a2R−2

g (s).

(C.7)

The contribution from the last term in Eq. (C.2) can be also explicitly
calculated with the help of a table integral from [5]:

1

2

∞
∫

0

db b J0(q⊥b) Ei
(

− c2

4a2

)

= − 1

q2
⊥

[

1 − e−q2
⊥R2

g(s)
]

, (C.8)

11A special case of this equation for µ = 0 and a = b can be found in [5].
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and we get:

M
∣

∣

∣

q⊥< aR−1
g (s)

=
R2

g(s)

a2

[

2 −
R2

g(s) q2
⊥

a2

]

− 1

q2
⊥

[

1 − e−q2
⊥R2

g(s)
]

,

M
∣

∣

∣

q⊥>aR−1
g (s)

=
1

q2
⊥

e−q2
⊥R2

g(s). (C.9)

As a result, we arrive at the expression for the amplitude presented in the
text (35).
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