
 

89

 

ISSN 1063-7796, Physics of Particles and Nuclei, 2008, Vol. 39, No. 1, pp. 89–100. © Pleiades Publishing, Ltd., 2008.
Original Russian Text © A.A. Godizov, V.A. Petrov, 2008, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2008, Vol. 39, No. 1.

 

INTRODUCTION

The objective of this work is to demonstrate, using
the example of elastic proton–(anti)proton scattering,
the advantages (in the framework of the Regge-eikonal
approach) of an explicit account of the asymptotic
behavior of Regge trajectories for phenomenological
description of elastic diffraction at high energies that
follows from QCD.

In our considerations, it will be assumed that QCD
is the fundamental theory of strong interaction and that
Regge trajectories are invariant with respect to the
renormalization group; these assumptions are justified
by observed bound states and resonances. It will be
shown below that in this case, due to the asymptotic
freedom, Regge trajectories tend to a constant for
asymptotically large values of transferred momentum.

Although in modern literature the assumption of the
linear character of Regge trajectories for small negative
values of the argument is postulated, the unique essen-
tial argument in favor of this statement of the problem
(along with the natural desire to continue Chew–Fraut-
chi plots to the scattering region) is the result of extrac-
tion in the framework of the Born approximation of the
degenerate trajectory 
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/
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 from data on the exchange
processes 
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However, it follows from analysis of these data that the
validity of the Born approximation (i.e., the capability
of neglecting absorptive corrections) is not well
grounded [2]. If absorptive corrections are taken into
account, the procedure of extraction of Regge trajecto-
ries from angular distributions becomes so complicated
that any results obtained from available experimental
data are far from unambiguous.

Therefore, from the phenomenological point of
view, approaches using the linear Regge trajectories for
the description of diffractive processes do not have any

 

advantage over approaches using nonlinear parameter-
izations.

In the case of the approximation of Regge trajecto-
ries by monotonic functions in which their asymptotic
behavior is explicitly taken into account, we obtain two
important advantages over the application of linear
parameterizations:

(1) difficulties related to possible occurrence of non-
physical singularities in signature factors are naturally
avoided;

(2) it is possible to reproduce with sufficiently good
accuracy experimentally observed diffraction pattern of

elastic scattering of nucleons at collision energies  >
23 GeV in the framework of the minimal phenomeno-
logical scheme using only three Regge trajectories.

Upon description of elastic diffraction, the Regge-
eikonal model will be used; the advantage of this model
as compared to the simple Regge approach is that
absorptive corrections are taken into account automati-
cally, which explicitly satisfies the unitarity condition
for the scattering amplitude [3]. Therefore (for close-
ness of this presentation), before discussing in detail
the asymptotic properties of Regge trajectories, we will
show how these trajectories are obtained in the frame-
work of the Regge-eikonal approach.

BASICS OF THE REGGE-EIKONAL MODEL

The combination of the eikonal representation and
the Regge poles was first considered in [3]. We will
limit ourselves to a brief presentation of basic proposi-
tions and results.

Let us consider the process of elastic or exchange
interaction of two elementary scalar particles (below,
upon analysis of data on elastic nucleon–nucleon scat-
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tering, spin effects will be neglected), hereinafter con-
ventionally called “hadrons.” The main physical char-
acteristic of this reaction is the differential scattering

cross section , which can be expressed in terms of

the elastic scattering amplitude 

 

T

 

(

 

s

 

, 

 

t

 

) (here, 

 

s

 

 is the
squared collision energy in the center-of-mass system,
and 

 

t

 

 is the four-momentum transfer squared) in the
limit of high energies as follows:

(1)

In the case of short-range forces, the eikonal repre-
sentation of the scattering amplitude can be introduced,

(2)

This formula (which is in essence the definition of
the eikonal) is written in the coordinate representation.
The Fourier–Bessel transform can be used to go from
one representation to the other,

(3)

The eikonal representation does not yield any
progress in consideration of our problem, since it is
reduced to the replacement of 

 

T
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) by 

 

δ

 

(

 

s
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t

 

) without
specification of the eikonal. The assumption that the
eikonal is proportional with high accuracy to the “effec-
tive” (quasi-)potential of hadronic interaction is the key
one, similar to that in nonrelativistic quantum mechan-
ics, except for the fact that the (quasi-)potential is rela-
tivistic in this case. According to the Van Hove interpre-
tation [4] of the relativistic (quasi-)potential as the
“sum” of all single-particle exchanges in the 

 

t

 

-channel,
the eikonal can be represented in the form

(4)

Here,  is the propagator of the particle

with the spin 

 

j

 

 and the mass 
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j

 

,  is the hadronic
current (the index 
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 characterizes the current type), 
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 is
the transferred four-momentum (
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 = 
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), 
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 are
the four-momenta of incident hadrons, and the sign

dσ
dt
------

dσ
dt
------

T s t,( ) 2

16πs
2

--------------------.=

T s b,( ) e
2iδ s b,( )

1–
2i

-------------------------.=

f b( ) 1
16πs
------------ t–( )J0 b t–( ) f t( ),d

0

∞

∫=

f t( ) 4πs b
2
J0 b t–( ) f b( ).d

0

∞

∫=

δ
f 1 f 2,( )

s t,( )

=  Jα1…α j

f 1 j m j, ,( )
p1 ∆,( )

D j m j,( )
α1…α j β1…β j,

m j
2 ∆2

–
------------------------------Jβ1…β j

f 2 j m j, ,( )
p2 ∆,( ).

m j

∑
j 0=

∞

∑

D j m j,( )
α1…α j β1…β j,

m j
2 ∆2

–
------------------------------

Jα1…α j

f j m j, ,( )

 denotes summing over all particles with the spin j

and different masses, which is further transformed into
the sum over Regge trajectories. We impose the follow-
ing constraints on the general dependence of all possi-
ble hadronic currents on ∆: complete symmetry with
respect to all αk, transversality with respect to  (k =

1, …, j), and tracelessness with respect to any pair of
indices. The first two conditions yield

where (p2, ∆2, (p∆)) are some scalar functions,

Pα ≡ , Gαβ ≡ gαβ – , and the inner

summing is carried out over all nonequivalent permuta-

tions of Lorentz indices (the total of 

terms). The condition of tracelessness, taking into
account that

results in the recurrent relations

From this we find

(5)

By substituting (5) into (4) and taking into account
the transversality and the tracelessness of hadronic cur-
rents, we obtain the following expression for the
eikonal:
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where Pj(x) are the Legendre polynomials of degree j
and

For similar external particles on the mass shell,

(6)

By applying the kinematic relations

we simplify the expression for the eikonal (from now
on, the indices f1 and f2 characterizing the type of sin-
gle-particle exchange will be omitted),

(7)

We divide the sum over all j in the right-hand side of
(7) into two sums over even and odd j,

(8)
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rem, which states that if for the function f(x) of a com-

plex variable the condition f(x) <  is satisfied for
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Regge hypothesis or the postulate of maximum analyt-
icity of the second order). In our case, it is reduced to

the proposition that  and (t) in (7) are
the values of analytic (holomorphic with respect to the
complex variable j) functions for integer nonnegative
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Here, P( j, x) is the analytic continuation of Legendre
polynomials Pj(x) to the region of complex j.

Since (according to our assumption) the unique
sources of singularities of the integrand in the region
Rej > –1/2 are the zeros of the functions sin(πj) and

( j) – t, by deforming the contour C and passing to
the contour parallel to the imaginary axis, Rej = –1/2,
we obtain

where the functions (t) are the roots of the equa-

tions ( j) – t = 0 and thus correspond to the poles of
the eikonal in the region of complex j. These poles are

called Regge poles, and the functions (t) are called
Regge trajectories (C-even for η = +1 and C-odd for
η = –1). For s � 2m2 – t/2, the contribution of the back-

m η( ) j
2 γ

η j m η( ) j, ,( )

mη
2

mη
2

δ s t,( ) 1
2i
----- jd

πj( )sin
------------------ η e

iπj–
+

2
-------------------–⎝ ⎠

⎛ ⎞
mη

∑
η 1±=

∑
C

∫°=

×
γ η( )

t j mη
2

j( ), ,( )

mη
2

j( ) t–
--------------------------------------P j

s

2m
2 t

2
---–

------------------- 1–,
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

.

mη
2

δ s t,( ) 1
2i
----- jd

πj( )sin
------------------ η e

iπj–
+

2
-------------------–⎝ ⎠

⎛ ⎞
mη

∑
η 1±=

∑
–

1
2
--- i∞–

–
1
2
--- i∞+

∫=

×
γ η( )

t j mη
2

j( ), ,( )

mη
2

j( ) t–
--------------------------------------P j

s

2m
2 t

2
---–

------------------- 1–,
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

+ η e
iπαn

η( )
t( )–

+

παn
η( )

t( )( )sin
--------------------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞ αn

η( )
t( )d

td
-------------------

n

∑
η 1±=

∑

×
πγ η( )

t αn
η( )

t( ) t, ,( )
2

-------------------------------------------P αn
η( )

t( ) s

2m
2 t

2
---–

------------------- 1–,
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

,

αn
η( )

mη
2

αn
η( )



92

PHYSICS OF PARTICLES AND NUCLEI      Vol. 39      No. 1      2008

GODIZOV, PETROV

ground integral can be neglected, and the Legendre
polynomials can be described by the leading terms of
the expansion. Therefore, by introducing the new func-
tion

where s0 is any scale determined a priori (for example,
s0 = 1 GeV2), and Γ(x) is the Euler gamma function

(note that the function (t) depends on the chosen
scale s0; from now on, the index s0 in the notation of this
function will be omitted), we obtain in the limit of high
energies

(9)

This formula (note that it is valid for those single-
particle exchanges for which (6) is violated), together
with the eikonal representation of amplitude (2), is the
essence of the Regge-eikonal model.

Thus, the practical advantage of the Regge-eikonal
approach is that it is possible to decrease the functional
arbitrariness by reducing the unknown function of two
variables T(s, t) to several functions of one variable,
which are Regge trajectories and Regge residues.
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to consider particular quantum field models.

In the case of QCD, any function of one dynamical
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cally large negative values of this variable (when mass
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In the potential scattering theory, the slope of the
Regge trajectory α(t) is related to the squared effective
radius of the interaction, generating this trajectory
approximately as R2 ~ α'(t)(2α(t) + 1) [5, 7]. Therefore,
in the quantum mechanical sense,  = const

indeed corresponds to small distances and the limit of
free fields for asymptotically large values of the trans-
ferred momentum (note that this correspondence is
absent for α(t) = α0 + ,  > 0, when R2  –∞ for
t  –∞).

Information concerning the behavior of particular
Regge trajectories additional to (10) can be obtained
from quantitative estimates in the domain of applicabil-
ity of perturbative methods (note that the application of
perturbation theory is justified already for –t > 6 GeV2,
since the running coupling constant for these scales

αs( ) < 0.3 [8]). Thus, for trajectories corresponding
to “quark–antiquark” pair exchanges in the perturbative
region, it was found [9] that
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At present, all practically useful QCD predictions
concerning the behavior of leading meson Regge tra-
jectories in the scattering region are limited by relations
(11)–(13); therefore, for description of diffractive pro-
cesses, it is necessary to construct phenomenological
schemes. In this case, in each well-posed phenomeno-
logical model using the Regge approach, the applicabil-
ity of relations (11)–(13) in the perturbative region
should be taken into account.

The obvious corollary of (11)–(13) is the fundamen-
tal nonlinearity of Regge trajectories, although the rela-
tions do not impose any constraints on the functional
form of Regge trajectories for sufficiently small t. To
obtain these constraints, we apply some natural
assumptions concerning the behavior of the imaginary
part of leading trajectories on the physical sheet.

Any Regge trajectory α(t) is a real analytic function
on the complex plane with a cut along the half line (tT ,
+∞), tT > 0 [5]; it will be assumed that Imα(t + i0)
increases sufficiently slowly for t  +∞ (for example,
not faster than Ct ln–1 – �t, � > 0), and therefore, the fol-
lowing dispersion relations with not more than one sub-
traction will be satisfied for α(t) on the physical sheet:

It will also be assumed that Imα(t + i0) ≥ 0 for t ≥ tT.
Under these conditions (note that in the general case,
they are not strictly proved; however, they are explicitly
satisfied in potential scattering theory and perturbation
theory [5]), α(t) is necessarily the Herglotz function
[5]; i.e.,

α t( ) α0
t
π
--- Im α t ' i0+( )

t ' t ' t–( )
------------------------------ t '.d

tT

+∞

∫+=

(14)

Further, it will be assumed that relations (14) are sat-
isfied for true Regge trajectories, which make leading
contributions into the diffractive scattering amplitudes.
Nonetheless, for the phenomenological description of
elastic diffraction at high energies, any functions mono-
tonic with one or several first derivatives that assume
the capability of sufficiently smooth matching within
the perturbative region can be used as purely quantita-
tive approximations to true Regge trajectories in the
diffractive scattering region, along with Herglotz func-
tions.

In this regard, it should be noted that the leading tra-

jectory in (13), (t), cannot be monotonically
matched with the trajectory αP(t), which makes the
main contribution to the eikonal in the diffractive
region (usually, αP(t) is called the “soft” Pomeron) due
to the phenomenological constraint αP(0) < 1.15, while

(– ) ≈ 1.28, with MZ ≈ 91.2 GeV. Therefore, it

will be assumed from now on that the trajectory (t)
corresponds to the so called “hard” Pomeron with the

intersection (t) > 1.3 [14], and the “soft” Pomeron
exchange corresponds to the exchange by more than
two gluons for asymptotically large momentum trans-
fer; the unique constraints on the functional form of the
phenomenological parameterizations of the trajectories
of the “soft” Pomeron are the asymptotic condition (12)
and the monotonicity assumption.

Unlike the Pomeron trajectory, for secondary trajec-
tories corresponding to the families of observed meson

d
nα t( )
dt

n
---------------- 0 t tT< n = 1 2 3 …, , , ,( ).>

αgg
0( )

αgg
0( )

MZ
2

αgg
0( )

αgg
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Table 1.  Results of fitting free phenomenological parameters

Pomeron f2/a2 Reggeon ω/ρ Reggeon

p1 0.123 c+ 0.1 c– 0.9

p2 1.58 GeV–2

p3 0.15

BP 43.5 B+ 153 B– 46

bP 2.4 GeV–2 b+ 4.7 GeV–2 b– 5.6 GeV–2

d1 0.43 GeV–2

d2 0.39 GeV–4

d3 0.051 GeV–6

d4 0.035 GeV–8

1.123 0.78 0.64

0.28 GeV–2 0.63 GeV–2 0.07 GeV–2

αP 0( ) α+ 0( ) α– 0( )

αP' 0( ) α+' 0( ) α–' 0( )
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resonances it is possible to select the Herglotz functions
that have asymptotic (11) and demonstrate reasonable
(from the phenomenological point of view) behavior in
the diffractive scattering region.

Note also that satisfaction of conditions (11), (12),
and (14) automatically results in the absence of non-
physical singularities in signature factors in the scatter-
ing region and corresponding problem.

PARAMETERIZATION 
OF THE MINIMAL EIKONAL

Along with the “soft” Pomeron, there exist at least
four secondary meson trajectories making a noticeable
contribution into eikonal (9), namely, C-even Reggeons
f2 and a2 and C-odd Reggeons ω and ρ. The trajectories
of the secondary Reggeons with the same signature will
be assumed to be approximately coinciding due to the
isospin symmetry of quark flavors; i.e., (t) ≈ (t) ≈
α+(t), and αρ(t) ≈ αω(t) ≈ α–(t). Therefore, the minimal
eikonal has the form (s0 ≡ 1 GeV2)

(15)

where αP(t), α+(t), and α–(t) are the trajectories of the
Pomeron and the secondary Reggeons, βP(t) is the res-

idue of the Pomeron, β+(t) ≡ (t) + (t) and β–(t) ≡
βω(t) + βρ(t) are the sums of residues of C-even and
C-odd secondary trajectories, respectively, and the neg-
ative (positive) sign before the C-odd contribution cor-
responds to the particle scattering on the particle (anti-
particle).

The phenomenological parameterization for the
contribution of the Pomeron into the eikonal is chosen
in the form

αa2
α f 2

δ s t,( ) δP s t,( ) δ+ s t,( ) δ– s t,( )+−+=

=  i
π αP t( ) 1–( )

2
------------------------------tan+⎝ ⎠

⎛ ⎞ βP t( ) s
s0
----⎝ ⎠

⎛ ⎞ αP t( )

+ i
π α+ t( ) 1–( )

2
------------------------------tan+⎝ ⎠

⎛ ⎞ β+ t( ) s
s0
----⎝ ⎠

⎛ ⎞ α+ t( )

−+ i
π α– t( ) 1–( )

2
------------------------------cot–⎝ ⎠

⎛ ⎞ β– t( ) s
s0
----⎝ ⎠

⎛ ⎞ α– t( )
,

β f 2
βa2

Table 2.  Quality of description of experimental angular dis-
tributions

Data Number
of points χ2

 = 23 GeV 124 280 

 = 31 GeV  154 467 

 = 53 GeV  85 423 

 = 62 GeV  107 409 

 = 31 GeV 38 108 

 = 53 GeV 60 336 

 = 62 GeV 40 156 

 = 546 GeV 181 352 

 = 630 GeV 19 78 

 = 1800 GeV 50 129 

Total 858 2738 

s pp( )

s pp( )

s pp( )

s pp( )

s p p( )

s p p( )

s p p( )

s p p( )

s p p( )

s p p( )

Table 3.  Quality of description of data on elastic nucleon–nucleon scattering in other sources

Reference χ2/d.o.f. Kinematic region

[19] No data 23 GeV ≤  ≤ 546 GeV, 0 GeV2 < –t ≤ 4 GeV2 

[20] 2.0 53 GeV ≤  ≤ 630 GeV, 0 GeV2 < –t ≤ 5 GeV2

[21] 2.4 19 GeV ≤  ≤ 1800 GeV, 0.1 GeV2 ≤ –t ≤ 14 GeV2

[22] 2.6 23 GeV ≤  ≤ 1800 GeV, 0.01 GeV2 ≤ –t ≤ 14 GeV2

[23] 4.3 23 GeV ≤  ≤ 1800 GeV, 0 GeV2 < –t ≤ 6 GeV2

[24] 2.8 23 GeV ≤  ≤ 1800 GeV, 0.01 GeV2 ≤ –t ≤ 14 GeV2

[25] 1.5 6 GeV ≤  ≤ 1800 GeV, 0.1 GeV2 ≤ –t ≤ 6 GeV2

s

s

s

s

s

s

s
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(16)

This approximation for the Pomeron trajectory αP(t)
is monotonic, and for it, asymptotic condition (12) is
explicitly satisfied. The contributions of the secondary
Reggeons are parameterized by the functions

(17)

where

(18)

αP t( ) 1 p1 1 p2t p3 p2t–( )arctan π
2
---–⎝ ⎠

⎛ ⎞– ,+=

βP t( ) BPe
bPt

1 d1t d2t
2

d3t
3

d4t
4

+ + + +( ).=

α± t( ) 8
3π
------αs –t c±+( )⎝ ⎠

⎛ ⎞
1/2

,=

β± t( ) B±e
b±t

,=

αs µ( ) 4π

11
2
3
---n f–

-------------------- 1

µ2

Λ2
------ln

------------ 1

1 µ2

Λ2
------–

---------------+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

is the so called single-loop analytical running coupling
constant [15], nf = 3 is the number of quark flavors
taken into account, Λ ≡ Λ(3) = 0.346 GeV is the dimen-
sional QCD parameter (the value is taken from [8]), and
the phenomenological parameters c+, c– > 0 are suffi-
ciently small and do not spoil asymptotic behavior (11)
of secondary trajectories in the perturbative region.

Note that even for asymptotically large values of the
transferred momentum, the behavior of the employed
approximation (16) of the “soft” Pomeron trajectory
has explicitly nonperturbative character,

, (t  –∞),

which is qualitatively different from the perturbative
behavior of secondary trajectories (11).

Note also that the contribution into the eikonal of the
trajectory called the “odderon,” the C-odd partner of the
Pomeron, was neglected. Although the validity of this
neglect for small scattering angles is phenomenologi-

αP t( ) 1–
1
t–

---- e

const

αs t–( )
--------------------–

∼ ∼
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–t, GeV2

dσ/dt, mb × GeV–2

p p p p→

31 GeV (×1010)
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1800 GeV

Fig. 1. Differential cross sections for the process    at various collision energies.p p p p
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cally grounded by the approximate equality of the total
cross sections of proton–proton and proton–antiproton

scattering at collision energies  > 200 GeV, the ade-
quacy of this approximation for scattering angles –t <
3 GeV2 can be verified only if angular distributions in
the considered kinematic region are available for both
of the reactions p + p  p + p and  + p   + p.
Unfortunately, at present, data on elastic diffraction for

the process p + p  p + p at energies  > 62.5 GeV
are absent. Nonetheless, neglecting the contribution of the
odderon into the eikonal (15) is dictated by our desire to
construct the minimal phenomenological scheme describ-
ing the diffraction pattern at high energies.

DESCRIPTION 
OF EXPERIMENTAL DATA

Let us describe elastic diffraction at high energies.
The unique reactions measured in the sufficiently wide

s

p p

s

energy range are the processes p + p  p + p and  +
p   + p. The results of fitting with respect to angu-

lar distributions in the kinematic region  > 23 GeV,
0.005 GeV2 < –t < 3 GeV2 (at larger scattering angles,
it is necessary to take into account the contributions of
the so called “hard” Pomerons and odderons which
make the dominant contribution into the eikonal in the
perturbative region) [16]1 are presented in Tables 1 and
2 and Figs. 1 and 2.

Figures 3 and 4 show the predictions, respectively,
for the total scattering cross section and the ratio of the
real part of the amplitude of forward scattering and the
imaginary part as functions of collision energy. In par-
ticular, for the colliders RHIC and LHC, we have
σtot(200 GeV) ≈ 52 mb and σtot(14 TeV) ≈ 111 mb,
respectively.

1 For calculation of electromagnetic corrections to the scattering
amplitude, we used the method from [17]; see also [18].

p
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s
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14000 GeV

p p → p p

Fig. 2. Differential cross sections for the process pp  pp at various collision energies.
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Figure 5 shows the approximate Regge trajectories
of the “soft” Pomeron αP(t) and the secondary
Reggeons α+(t) and α–(t) obtained as a result of param-
eter fitting. Note that although the intersections of α+(0)
and α–(0) are higher than the intersections of the corre-
sponding Chew–Frautchi plots, they have considerably
smaller slopes at t = 0 (see Table 1). Therefore, the
smooth and monotonic matching of Chew–Frautchi
plots in the resonance region with our approximations
to meson trajectories in the scattering region is not impos-
sible, and thus, the presented quantitative estimates for
secondary trajectories in the region 0 GeV2 < –t < 2 GeV2

do not contradict asymptotic perturbative relations (11),
phenomenology, and relations (14).

For comparison, Table 3 gives the quality of data
description obtained by other authors for phenomeno-
logical description of the same processes.

We especially mention [25], in which the best phe-
nomenological description of data in a wide kinematic
region is presented. In that work, the so called “dipole”
Pomeron model is used, where the leading term in the
scattering amplitude has the form

ad s t,( ) ∂
∂j
-----

βd j t,( )
πj
2
-----sin

----------------- i
s
s0
----–⎝ ⎠

⎛ ⎞ j 1–

j αd t( )=

∼

=  ∂ βd j t,( )ln
∂j

-------------------------
j αd t( )=

π
2
---

π αd t( ) 1–( )
2

-----------------------------tan i
s
s0
----–⎝ ⎠

⎛ ⎞ln+ +

×
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παd t( )
2
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⎛ ⎞ αd t( ) 1–

,

104103102101 s GeV,
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70

100

150

200
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p p
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Fig. 3. Total cross section of nucleon–nucleon scattering as a function of collision energy (experimental data are taken from Particle
Physics Data System http://wwwppds. ihep.su:8001/ppds.html).



98

PHYSICS OF PARTICLES AND NUCLEI      Vol. 39      No. 1      2008

GODIZOV, PETROV

where s0 = 1 GeV2, αd(t) = 1 + , and  ≈
0.31 GeV–2.

Unfortunately, upon description of experimental
data, in [25], the first and second terms in square brack-
ets are neglected; in the general case, this is not justified

in the region  < 50 GeV, –t > 1 GeV2 when

 > 0.8 and ln  < 8. To avoid this

difficulty upon description of experimental data in the

kinematic region  > 5 GeV, 0.1 GeV2 < –t < 6 GeV2,
it is necessary to impose a specific constraint on the
behavior of the unknown analytic function βd( j, t),

αd' t αd'

s

π
2
---

π αd t( ) 1–( )
2

------------------------------tan
s
s0
----⎝ ⎠

⎛ ⎞

s

(the sign “�” in the last inequality means that it is pos-
sible to neglect the corresponding term in the amplitude
without a considerable change in χ2/d.o.f.).

This constraint, which is not mentioned in [25] but
is explicitly present in the “dipole” Pomeron model, has
no substantiation from QCD or general principles, and
in our opinion, it deprives the phenomenological
scheme presented in [25] of its theoretical basis (the

∂
∂j
-----

βd j t,( )
πj
2
-----sin

-----------------ln

j 1 αd' t+=

 � 
s
s0
----⎝ ⎠

⎛ ⎞ ,ln
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s GeV,

Fig. 4. Ratio of the real and imaginary parts of the amplitude of nucleon–nucleon forward scattering as a function of collision energy
(experimental data are taken from Particle Physics Data System http://wwwppds. ihep.su:8001/ppds.html).
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same reasoning can be applied to the “triple” Pomeron
model also considered in [25]).

CONCLUSIONS

Let us summarize what was said above. On the
example of the elastic diffractive proton–(anti)proton
scattering, it was shown that the explicit account of
asymptotic properties of Regge trajectories in the per-
turbative region provides the possibility of not only
avoiding difficulties related to the occurrence of non-
physical signature singularities in the scattering region,
but qualitatively reproducing the diffraction pattern in a
sufficiently wide kinematic region in the framework of
the minimal phenomenological scheme with a clear
physical meaning, taking into account only those
Regge trajectories whose considerable contributions
cannot be doubted. This is the main practical advantage
of the proposed approach, as compared to the applica-
tion of linear Regge trajectories, for which a more or
less satisfactory description of experimental data is

possible only if a larger number of Reggeons is used
[20–22, 25].
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