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By means of solving the Bethe-Salpeter equation with the minimal perturbative kernel (ladder

approximation) in the arbitrary covariant gauge, there was found a series of intercepts of meson Regge

trajectories associated with colorless singularities of the four-quark Green function in SUðNcÞ quantum
chromodynamics with massless quarks. The gauge and renorm-invariance of the result is grounded.
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I. INTRODUCTION

One of the most important and interesting problems of
the theory of strong interaction is the problem of calcula-
tion of Regge trajectories (singularities of scattering am-
plitudes continued analytically to the region of complex
angular momentum [1]) in the framework of quantum
chromodynamics (QCD). Upon having the analytical be-
havior of Regge trajectories determined we automatically
get information on hadron masses and decay widths which
corresponds to those points of Regge trajectories where
trajectories themselves take on integer non-negative val-
ues. Notably, mass M and decay width � of some spin-N
hadronic state placed on Regge trajectory �ðtÞ obey the
equation

�ðtNÞ ¼ N ðRetN ¼ M2; ImtN ¼ �M�Þ:

Moreover, the behavior of leading Regge trajectories in the
region of small negative values of the argument governs the
high energy evolution of the diffractive pattern at scattering
to small angles.

From the very nature of Regge trajectories in quantum
field theory (poles of scattering amplitudes and corre-
sponding Green functions) there follows one of their
most important properties—renorm-invariance, i.e., their
independence of the renormalization scheme and the re-
normalization scale.

The most popular approach to calculation of Regge
trajectories in QCD is the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) approach, which, in fact, brings us to looking for
poles of solution of the linear integral BFKL equation
[2]—the modification of the Bethe-Salpeter (BS) equation
where external particles (quarks or gluons) and their propa-
gators are replaced with the so-called reggeized partons,
i.e., reggeons with quantum numbers of quarks and gluons
obtained via solving the BS equation with some perturba-
tive kernel. Under usage of the BFKL approach the asymp-

totic behavior of some Regge trajectories was determined
in the region of high negative values of the argument [3,4]
where perturbative techniques are applicable. However, the
problem of calculating renorm-invariant Regge trajectories
in the region of small values of the argument (or, at least,
renorm-invariant intercepts of Regge trajectories) is so far
unsolved. The calculation of the ‘‘hard pomeron’’ (the
leading reggeon associated with the spectrum of states
formed by two reggeized gluons) intercept in the frame-
work of the BFKL approach brings us to the result explic-
itly depending on both the renormalization scheme and the
renormalization scale [5]:

�ggð0Þ ¼ 1þ 12 ln2

�
�sð�Þ

�
1� 20

�
�sð�Þ

�
þ oð�2

sð�ÞÞ;

where � is the renormalization scale and �sð�Þ ¼ �g2s ð�Þ
4� is

the QCD effective running coupling.
The direct aim of this paper is the calculation of renorm-

invariant intercepts of Regge trajectories associated with
colorless hadronic states formed by quark and antiquark.
For this purpose we will use a technique alternative to the
BFKL method that was applied earlier by C. Lovelace to
the scalar field model �3

6 [6]. This technique consists in

looking for singularities of the solution of the BS equation
with some perturbative kernel and implies usage of effec-
tive running coupling. The basic physical idea follows. The
Green function singularity points associated with the com-
plex value of the quark-antiquark system invariant mass
should not depend on the quark virtualities (this is the main
hypothesis based on the fact that Regge trajectories are
functions of one dynamical variable). So we may give
virtualities of the quark and the antiquark asymptotically
high negative values (but the value of the system invariant
mass itself can be put low or even equal to zero).
Considering the BS equation in the region of asymptoti-
cally high quark virtualities allows us to choose the renor-
malization scale large enough for having a possibility to
use the approximation of perturbative kernel minimal on
powers of the running coupling (instead of the full renorm-*anton.godizov@gmail.com
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invariant kernel). Such an approximation is called the
‘‘ladder’’ one. At this, the running coupling itself demon-
strates characteristic perturbative behavior at the chosen
renormalization scale (connected with high virtualities of
the quarks). The positions of Green function singularities
must depend on the quark-antiquark system invariant mass
and QCD fundamental parameters only. Renorm-
invariance should reveal itself in the fact that calculated
Regge trajectories must be independent of the renormal-
ization scheme.

II. THE LADDER APPROXIMATION AND
INTERCEPTS OF MESON REGGE

TRAJECTORIES

In the case of zero invariant mass, t ¼ 0, the BS equation

for the full four-quark Green function Ĝðq; p;�; �gsð�ÞÞ
(here q and p are 4-momentums of quarks) cut at two
points is of the form

.

For the full renorm-invariant kernel K̂ðq; p;�; �gsð�ÞÞ there takes place a formal expansion on powers of the effective
running coupling:

If there is a hard dynamical scale in the BS equation (for example, large virtuality of quarks), then by proper choice of
the renormalization scale one can make terms of order Oð �g4sÞ in the kernel expansion to be little enough (in comparison
with the tree term) to have a possibility to neglect them. We are interested in those singularities which depend on the
invariant mass t of the system ‘‘quark-antiquark’’ and do not depend on other dynamical scales. So for consideration we
may choose the region of large quark virtualities. At this, there emerges a possibility of usage of the minimal perturbative
kernel and perturbative expressions for effective running parameters at scales of order of the quark virtualities.

In such an approximation the connected part of Ĝ turns out to be equal to the sum of the ladder diagrams:

Since we deal with the sum of ladder diagrams (instead
of the full Green function) the gauge and renorm-
invariance of the results are not a priori (in contrast to
the full kernel, the minimal perturbative kernel is not gauge
and renorm-invariant) and should be grounded addition-
ally. We will start from the arbitrary covariant gauge.

In this paper we restrict ourselves by looking for the
colorless singularities at zero invariant mass, t ¼ 0 (inter-
cepts of meson Regge trajectories), in the case of massless
quarks. Upon the average over quark colors in the colorless

t channel, the BS equation for Ĝ in the ladder approxima-
tion takes the form of (for better visual perception we omit
spinor indices at matrix structures)

Ĝðq; pÞ ¼ ið2�Þ4�4ðq� pÞ þ N2
c � 1

2Nc

�g2sð
ffiffiffiffiffiffiffiffiffiffi�q2

p Þ
ið2�Þ4

�
Z d4k

ðq� kÞ2q4
�
g�� � ð1� �ð

ffiffiffiffiffiffiffiffiffiffi
�q2

q
ÞÞ

� ðq� kÞ�ðq� kÞ�
ðq� kÞ2

�
½q̂��Ĝðk; pÞ��q̂�;

where q, p, and k are quark 4-momentums, �� are Dirac
matrices, q̂ � q��

�, Nc is the number of colors, �gsð�Þ is
the QCD effective running coupling, �ð�Þ is the running

gauge parameter, and � ¼ ffiffiffiffiffiffiffiffiffiffi�q2
p

is the chosen renormal-
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ization scale (here and in the following, matrix structures
to the left of the Green function should be attributed to the
lower spinor line in the figures, and matrix structures to the

right of Ĝ to the upper one).
Note that for large enough values of the renormalization

scale the running gauge parameter behaves as �ð�Þ �
1= ln�

2

�2 � �g2sð�Þ [7]. So since we neglect loop corrections

of order �g4s and higher in the kernel, we may also neglect
the longitudinal part of the gluon propagator in the tree
term of the kernel because it also gives a contribution of
order �g4s . In other words, in the region of asymptotically

high
ffiffiffiffiffiffiffiffiffiffi�q2

p
the approximation of the minimal perturbative

kernel (ladder approximation) does not contain depen-
dence on the gauge.

After the convolution multiplication by q̂� q̂ (the sign
‘‘�’’ denotes the direct product) we come to the equation

q�q�½��Ĝðq; pÞ��� ¼ ið2�Þ4�4ðq� pÞq�q�½�� � ���

þ N2
c � 1

2Nc

�g2sð
ffiffiffiffiffiffiffiffiffiffi�q2

p Þ
ið2�Þ4

Z d4k

ðq� kÞ2

�
�
g�� � ðq� kÞ�ðq� kÞ�

ðq� kÞ2
�

� ½��Ĝðk; pÞ���: (1)

Any ladder diagram can be represented as the sum of
terms containing the direct product of two matrix struc-
tures. Since we put quarks massless, then each of these
structures corresponds to the convolution product of the
even number of Dirac matrices (vertices and quark propa-
gators supply individual Dirac matrices to the correspond-

ing structure). So Ĝðq; pÞ may be represented in form of

Ĝðq; pÞ ¼ G00ðq; pÞ½I� I� þ 1
2ðG20ðq; pÞðq�p	 � p�q	Þ þ E20ðq; pÞe�	�
q

�p
Þ½��	 � I�
þ 1

2ðG02ðq; pÞðq�p � p�qÞ þ F02ðq; pÞe���q�p�Þ½I � ��� þ 1
4ðG22ðq; pÞðq�p	 � p�q	Þðq�p � p�qÞ

þ E22ðq; pÞe�	�
q
�p
ðq�p � p�qÞ þ F22ðq; pÞðq�p	 � p�q	Þe���q�p�

þH22ðq; pÞe�	�
q
�p
e���q

�p�Þ½��	 � ��� þ 1
2ðG24ðq; pÞðq�p	 � p�q	Þ

þ E24ðq; pÞe�	�
q
�p
Þ½��	 � �5� þ 1

2ðG42ðq; pÞðq�p � p�qÞ þ F42ðq; pÞe���q�p�Þ½�5 � ���
þG40ðq; pÞ½�5 � I� þG04ðq; pÞ½I � �5� þG44ðq; pÞ½�5 � �5�: (2)

In square brackets there are Dirac matrix structures (I is the
unit matrix, ��� � i �

��������

2 , �5 � i�0�1�2�3) and all
unknown functions are scalars.

After the substitution of the last expression into (1) we

convolve it with the structure
g��
16 ½�� � �� þD� �D��

(here D� � i���5) over all spinor indices.
In view of relations

g��

16
q�q�Sp½����Ĝðq; pÞ���� þD���Ĝðq; pÞ��D��

¼ q2 ~Gðq; pÞ

and

g��
16

�
g�� � ðq� kÞ�ðq� kÞ�

ðq� kÞ2
�
Sp½����Ĝðq; pÞ����

þD���Ĝðk; pÞ��D�� ¼ 3 ~Gðk; pÞ;

where ~Gðq; pÞ � G00ðq; pÞ þ ðG22ðq; pÞ �H22ðq; pÞÞ �
ðp2q2 � ðpqÞ2Þ þG44ðq; pÞ, we come to the scalar integral
equation

q2 ~Gðq; pÞ ¼ ið2�Þ4�4ðq� pÞq2 þ N2
c � 1

2Nc

3 �g2sð
ffiffiffiffiffiffiffiffiffiffi�q2

p Þ
ið2�Þ4

�
Z d4k

ðq� kÞ2
~Gðk; pÞ (3)

for some linear combination of structure functions,
~Gðq; pÞ. In other words, we have implemented a partial
diagonalization of Eq. (1).

If we put �g2sð
ffiffiffiffiffiffiffiffiffiffi�q2

p Þ ¼ 16�2=½ð113 Nc � 2
3 nfÞ ln�q2

�2 �
(where nf is the full number of quark flavors), Eq. (3)

can be solved directly. In this way we can obtain some part
of the spectrum of intercepts of meson Regge trajectories.
The one-loop approximation of the running coupling �g2sð�Þ
is not renorm-invariant. It contains the QCD dimensional
parameter � depending on the renormalization scheme.
Also, its value explicitly depends on the renormalization

scale (above we have chosen � ¼ ffiffiffiffiffiffiffiffiffiffi�q2
p

). But we are

interested in those singularities of ~Gðq; pÞ which are
renorm-invariant, i.e., independent of the renormalization
scale (quark virtualities) and �. Only such singularities
should be considered as intercepts of Regge trajectories.
The procedure of solving (3) is expounded in the

Appendix. Here we give only the obtained series of inter-
cepts

INTERCEPTS OF MESON REGGE TRAJECTORIES IN SU( . . . PHYSICAL REVIEW D 81, 065009 (2010)

065009-3



�ðkÞ
�qqð0Þ ¼

9ðN2
c � 1Þ

ð2kþ 1ÞNcð11Nc � 2nfÞ � 1; (4)

where k is an arbitrary integer and nf is the full number of

quark flavors.

III. DISCUSSION

Let us point out the main features of series (4). The
calculated intercepts depend on the fundamental dimen-
sionless parameters, Nc and nf, and do not depend on

quark virtualities, dimensional QCD parameter �, and
the coupling. They do not depend on the renormalization
scheme either.

The spectrum of intercepts from (4) will not change if
we multiply the renormalization scale � (fixed in the BS

equation) by arbitrary constant, i.e., if we put� ¼ C
ffiffiffiffiffiffiffiffiffiffi�q2

p
instead of � ¼ ffiffiffiffiffiffiffiffiffiffi�q2

p
. This is the straight consequence of

their independence of q2, p2, and �. It is curious that
independence of the coupling directly follows from the
renorm-invariance of Regge trajectories in asymptotically
free massless field models [8]. All these facts point to
renorm-invariance of series (4). The gauge invariance fol-
lows from the independence of the minimal perturbative
kernel of the gauge parameter (this was discussed above).
Wewould like to emphasize that the obtained result (for the
case of massless quarks) is asymptotically accurate since
the value of �q2 is chosen to be asymptotically high.

In our calculations the masslessness of quarks (chiral
symmetry) was an essential point. In reality the chiral
symmetry is broken, either explicitly (in the Lagrangian)
or dynamically, and the question how spectrum (4) is
affected by nonzero quark masses is very important.
Mass terms are present in both the quark propagators and
the effective running coupling. However, even the heaviest
quark mass does not bias the asymptotical behavior of the
effective running coupling in the region of extra-high
values of the renormalization scale. Relative to quark
propagators the situation is more complicated. For massive
quarks the BS equation takes the form

ðq̂�m1ÞĜðq; pÞðq̂�m2Þ ¼ ið2�Þ4�4ðq� pÞ½ðq̂�m1Þ
� ðq̂�m2Þ� þ Âðq; pÞ;

where m1 and m2 are the quark masses and Âðq; pÞ is the
second (integral) term in the right-hand side of Eq. (1). In
this case the numbers of both the Dirac matrix structures
and the independent structure functions in (2) appreciably
increase and partial diagonalization of the BS equation
cannot be implemented in such a simple way as we do
for deriving (3) from (1). So at the moment we are not able
to give quantitative estimation of the chiral symmetry
breaking influence on series (4) explicitly from the BS
equation. But it is clear that increasing of quark masses

should increase masses of meson states placed on Regge
trajectories and, hence, decrease corresponding intercepts.
Below we will see that comparison of (4) with meson
phenomenology allows us to estimate this decrease for
the leading (k ¼ 0) intercept from (4). Besides, such de-
creasing of intercepts implies that spectrum (4) can be
associated only with those observed reggeon families
which have all intercepts lower than the leading intercept
from (4).
Let us consider light (i.e., composed of u and d quarks)

mesons with isospin I ¼ 1. This choice is motivated by the
wish to avoid mixing with more heavy quark flavors. For
such mesons there exist four families of Regge trajecto-
ries—a reggeons, � reggeons,� reggeons, and b reggeons.
Chew-Frautschi plots (dependences of resonance spins on
their masses squared) for these reggeons demonstrate uni-
fied linear behavior1 with slopes about 1 GeV�2 [1]. At
Nc ¼ 3 and nf ¼ 6 (three generations of fermions in the

standard model) the leading intercept from (4) is �ð0Þ
�qqð0Þ ¼

1=7. Even-spin state reggeons with positive intercepts
should not have a spin-0 state because it would have
imaginary mass (tachyon). The leading � trajectory has a
spin-0 state, pion. Hence, if we assume the existence of the
continious chiral limit, spectrum (4) cannot be associated
with � reggeons. The leading intercepts of � and a re-
ggeons can be estimated not only via linear continuation of
their Chew-Frautschi plots but also from the high energy
evolution of angular distributions for reactions �� þ p !
�0 þ n and �� þ p ! 
þ n. They both have values of
about 0.45 [9]. Consequently, series (4) can be associated
only with b reggeons. In Table I we compare intercepts
from series (4) at Nc ¼ 3 and nf ¼ 6 with the observed

states of b reggeons.

Series (4) accumulates towards the value �ð1Þ
�qq ð0Þ ¼ �1

(similar accumulations take place for the four-gluon Green
function [10]). However, the intercept of the Chew-

TABLE I. The comparison of intercepts from (4) for the cases
Nc ¼ 3 and nf ¼ 6 with the observed states of b reggeons. The

subscripts denote resonance spins and the numbers in parenthe-
ses denote approximate values of meson masses in MeV.

k �ðkÞ
�qqð0Þ b mesons

0 1=7 b1ð1235Þ
b3ð2025Þ

1 �13=21 b1ð1960Þ
b3ð2245Þ

2 �27=35 b1ð2240Þ

1This, of course, does not imply that true Regge trajectories
are strictly linear since equations like �ðM2 � iM�Þ ¼ N do not
imply that Re�ðM2Þ ¼ N and Im�ðM2Þ ¼ 0. Unfortunately, for
most of the reggeons the only way to estimate their intercepts
phenomenologically is the continuation of Chew-Frautschi plots.
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Frautschi plot corresponding to the next to leading (k ¼ 1)
b trajectory is lower than �1. The same takes place for �
reggeons: Chew-Frautschi plots for all observed � trajec-
tories, except the leading one, have intercepts lower than
�1 (the list of all observed � and other mesons can be
found at [11]). But any true odd-spin Regge trajectory can
take value �1 nowhere because this would cause a scat-
tering amplitude unphysical singularity associated with
some negative-spin state. Consequently, if we assume mo-
notony of Regge trajectories below the first threshold, then
all odd-spin Regge trajectories with negative intercepts
should behave as in Fig. 1. Such a pattern seems quite
natural. The nonlinearity of trajectories gains strength with
radial quantum number k increasing, and true values of
reggeon intercepts should have values higher than those of
their Chew-Frautschi plots.

Now we can estimate the degree of influence of chiral
symmetry breaking on the leading intercept value from
series (4). The true intercept of the leading b reggeon

must have value lower than �ð0Þ
�qqð0Þ ¼ 1=7 and higher

than the intercept of the corresponding Chew-Frautschi

plot,�ð0Þ
lin ¼ �0:17� 0:04. For other b reggeons we cannot

do such a concrete estimation, but it is clear that they
should have intercept values higher than �1 and the accu-
mulation of these intercepts as in (4) is preserved at chiral
symmetry breaking. So there takes place a qualitative
correlation between the obtained series (4) and the phe-
nomenology of b mesons.

At the very end we must note that, in fact, we have not
solved the BS equation (1) completely and found only that
part of the spectrum of intercepts of meson Regge trajec-
tories which corresponds to b reggeons. The full solution
of Eq. (1) should also contain other parts of the four-quark
Green function singularities which could be associated
with a, �, and � reggeons. Together with the problem of
the chiral symmetry breaking influence on reggeon spec-
trums there is much further work to be done on these
questions.
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APPENDIX

We will solve the integral equation

q2 ~Gðq; pÞ ¼ ið2�Þ4�4ðq� pÞq2 þ N2
c � 1

2Nc

3 �g2sð
ffiffiffiffiffiffiffiffiffiffi�q2

p Þ
ið2�Þ4

�
Z d4k

ðq� kÞ2
~Gðk; pÞ (A1)

using the technique applied earlier to the BS equation in
the scalar field model �3

6 [6].

After the Wick rotation Eq. (A1) turns into

~q2 ~Gð ~q; ~pÞ ¼ ð2�Þ4�4ð ~q� ~pÞ ~q2 þ N2
c � 1

2Nc

3 �g2sðj ~qjÞ
ð2�Þ4

�
Z d ~k

ð ~q� ~kÞ2
~Gð ~k; ~pÞ: (A2)

Similarly to the three-dimensional case the amplitude ~G
can be expanded into a series of partial harmonics relative
to the scattering angle

cos� ¼ ð ~p ~qÞ
j ~pjj ~qj :

Amore detailed description of this formalism can be found
in [6,12]. We restrict ourselves to the list of basic formulas.
In four space dimensions the partial wave expansion is

of the form

Tðcos�Þ ¼ X1
L¼0

ð2Lþ 2ÞULðcos�ÞTL;

where ULðxÞ are the second kind Chebyshev polynomials.
The reverse formula is

TL ¼ 1

�ðLþ 1Þ
Z 1

�1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
ULðxÞTðxÞ:

If scalar functions A, B, and C are related by

Að ~q; ~pÞ ¼ 1

ð2�Þ4
Z

d ~kBð ~q; ~kÞCð ~k; ~pÞ;

then for the partial wave projections (in what follows, q �
j ~qj, k � j ~kj, p � j ~pj)

ALðq; pÞ ¼ 1

4�2

Z 1

0
dkk3BLðq; kÞCLðk; pÞ:

And, at last, the definition of the four-dimensional analog
of the second-kind Legendre function is

Qð4Þ
L ðzÞ ¼ 1

�ðLþ 1Þ
Z 1

�1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ULðxÞ
z� x

:

For this function the following integral representation ex-
ists:

M2

Re M2

1

FIG. 1. Expected behavior of odd-spin meson Regge trajecto-
ries with negative intercepts.
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Qð4Þ
L ðcosh�Þ ¼

Z 1

j�j
d�0e�ðLþ1Þ�0 ¼ e�ðLþ1Þj�j

Lþ 1
:

Now we introduce a dimensionless function

GLðlnq; lnpÞ � ~GLðq; pÞ=½4�2q3p�. Then, after proceed-
ing in (A2) to the partial wave representation we come to

GLðlnq; lnpÞ ¼ �ðlnq� lnpÞ þ N2
c � 1

2Nc

3 �g2sðqÞ
8�2

�
Z

dðlnkÞQð4Þ
L

�
cosh

�
ln
k

q

��
GLðlnk; lnpÞ:

(A3)

We define the Fourier transform of GLðlnq; lnpÞ as

GLðlnq; lnpÞ � 1

2�

Z 1

�1
db

Z 1

�1
db0eiðb lnq�b0 lnpÞ

� ½ðLþ 1Þ2 þ b2� ~FLðb; b0Þ;
where

FLðlnq; lnpÞ � 1

2�

Z 1

�1
db

Z 1

�1
db0eiðb lnq�b0 lnpÞ ~FLðb; b0Þ:

Taking into account that

Z 1

�1
d�eib�Qð4Þ

L ðcosh�Þ ¼ 2

ðLþ 1Þ2 þ b2

we come to the equation

1

2�

Z 1

�1
db

Z 1

�1
db0eiðb lnq�b0 lnpÞ½ðLþ 1Þ2 þ b2� ~FLðb; b0Þ

¼ �ðlnq� lnpÞ þ N2
c � 1

2Nc

3 �g2sðqÞ
4�2

1

2�

�
Z 1

�1
db

Z 1

�1
db0eiðb lnq�b0 lnpÞ ~FLðb; b0Þ

which is, in turn, equivalent to the differential equation�
ðLþ 1Þ2 � d2

dðlnqÞ2
�
FLðlnq; lnpÞ

¼ �ðlnq� lnpÞ þ N2
c � 1

2Nc

3 �g2sðqÞ
4�2

FLðlnq; lnpÞ: (A4)

In what follows, at asymptotically high values of q we will
use the perturbative one-loop approximation to the QCD
effective running coupling, �g2sðqÞ ¼ 8�2=½ð113 Nc � 2

3nfÞ�
lnq

�� (at this, all the dependence on the renormalization

scheme is in the constant �). So the Fourier transform of
(A4) takes the form of

½ðLþ 1Þ2 þ b2� ~FLðb; b0Þ
¼ �ðb� b0Þ � iE

2

Z 1

�1
db00ðb� b00Þ ~FLðb00; b0Þ; (A5)

where ðbÞ ¼ b=jbj and E � ½9ðN2
c � 1Þ�=

½Ncð11Nc � 2nfÞ�.
Now it is convenient to introduce a new variable,

� �
Z b

0

db00

ðLþ 1Þ2 þ b002
¼ arctan b

Lþ1

Lþ 1
;

� � �ð1Þ ¼ �

2ðLþ 1Þ :

Function �ðbÞ maps b ¼ ð�1;1Þ onto � ¼ ð��;�Þ
monotonically. So

ðb� b0Þ ¼ ð�� �0Þ;
�ðb� b0ÞððLþ 1Þ2 þ b02Þ ¼ �ð�� �0Þ;

where �0 � �ðb0Þ and in terms of the new function
yLð�; �0Þ � ððLþ 1Þ2 þ b2Þ ~FLðb; b0ÞððLþ 1Þ2 þ b02Þ
Eq. (A5) takes the form of

yLð�;�0Þ ¼ �ð���0Þ � iE

2

Z 1

�1
d�00ð���00Þ~yLð�00;�0Þ:

After substitution yLð�; �0Þ ¼ @jð�;�0Þ
@� we come to differen-

tial equation

�ð�� �0Þ þ iE

2
fjð�; �0Þ þ jð��; �0Þg

¼ e�iE� @

@�
feiE�jð�;�0Þg:

The solution of this equation is

eiE�jð�; �0Þ ¼ eiE�
0 ½Cþ 1

2ð�� �0Þ�
þ 1

2e
iE�fjð�; �0Þ þ jð��; �0Þg:

The value of C is not arbitrary. Since

jð��; �0Þ ¼ eiEð�0��Þ½C� 1
2� þ 1

2fjð�; �0Þ þ jð��; �0Þg;
then adding � forms of this equation, we find C ¼ i

2 �
tanðE�Þ. Hence, finally, the solution of (A5) is of the form
½ðLþ 1Þ2 þ b2� ~FLðb; b0Þ
¼ �ðb� b0Þ � iE

2
eiEð�ðb0Þ��ðbÞÞ½ð�� �0Þ þ i tanðE�Þ�

from where we obtain a series of the amplitude singular-
ities (intercepts of meson Regge trajectories)

�ðkÞ
�qqð0Þ ¼

9ðN2
c � 1Þ

ð2kþ 1ÞNcð11Nc � 2nfÞ � 1;

where k is an arbitrary integer.
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