
CMS Physics Technical Design Report, Volume II: Physics Performance 1193

7.4. Diffraction and forward physics

7.4.1. Introduction

This section outlines the diffractive and forward physics that CMS can do – together with the
TOTEM experiment. The CMS and TOTEM detectors involved are presented in Chapter 7 of
Volume 1 of the CMS Physics TDR [7].

The combined phase space coverage of the two experiments makes it possible to study
many physics subjects in diffractive interactions – from QCD and the investigation of the
low-x structure of the proton to the production of SM and MSSM Higgs bosons. Diffractive
events are characterised by the fact that the incoming proton(s) emerge from the interaction
intact, or excited into a low mass state, with only a small energy loss. Diffractive processes
with proton energy losses up to a few per cent are dominated by the exchange of an object
with vacuum quantum numbers, the so called Pomeron, now understood in terms of partons
from the proton. For larger energy losses, mesonic exchanges – Reggeons and pions –
become important. The topology of diffractive events is characterised by a gap in the rapidity
distribution of final-state hadrons due to the lack of colour of the exchanged object.

Events with a fast proton in the final state can also originate from the exchange of a
photon. In particular, forward tagging one leading proton allows the selection of photon-
proton events with known photon energy; likewise, tagging two leading protons gives access
to photon-photon interactions of well known centre-of-mass energy.

Triggering of diffractive/forward events is discussed in [247] and in Appendix E.3. More
details on the work presented here can be found in [248].

7.4.2. The interest of diffractive interactions

The study of hard diffraction has been pioneered by the UA8 experiment at CERN [249].
There have been major advances in this field recently, largely driven by the study of diffraction
at HERA and the Tevatron. The essential results are discussed in [250] and can be summarised
as follows:

• Many aspects of hard diffractive processes are well understood in QCD: the presence of a
hard scale allows the use of perturbative techniques and thus to formulate the dynamics in
terms of quarks and gluons.

• A key to this success are factorisation theorems in electron-proton scattering, which render
part of the dynamics accessible to calculation in perturbation theory. The remaining non-
perturbative quantities are the so-called diffractive parton distribution functions (dPDFs)
and generalised (or “skewed”) parton distributions (GPDs). They can be extracted from
measurements and contain specific information about small-x partons in the proton that can
only be obtained in diffractive processes.
Diffractive parton densities are determined from inclusive diffractive processes and can be
interpreted as conditional probabilities to find a parton in the proton when the final state of
the process contains a fast proton of given four-momentum. Generalised parton distributions
can be accessed in exclusive diffractive processes; they quantify correlations between parton
momenta in the proton. Theirt-dependence is sensitive to the distribution of partons in the
transverse plane.

• To describe hard diffractive hadron-hadron collisions is more challenging since factorisation
is broken by rescattering between spectator partons. These soft re-interactions can produce
additional final-state particles which fill the would-be rapidity gap. When such additional
particles are produced, a very fast proton can no longer appear in the final state because of
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energy conservation. The effect is often quantified in terms of the so called “gap survival
probability”. These rescattering effects are of interest in their own right because of their
intimate relation with multiple scattering effects, which at LHC energies are expected to be
crucial for understanding the structure of events in hard collisions.
The dynamics of rescattering and multi-gap events is still not completely understood.
The available data can be described in terms of an effective, non-linear Pomeron
trajectory [251]; its variation with energy would be a consequence of multi-Pomeron
exchange effects [252]. Other models, also testable at the LHC have been proposed (see
e.g. [253] and references therein). These topics can be pursued in more detail with the
CMS-TOTEM data at the LHC.

• A fascinating link has emerged between diffraction and the physics of heavy-ion collisions
through the concept of saturation, which offers a new window on QCD dynamics in the
regime of high parton densities.

• Perhaps unexpectedly, the production of a SM or MSSM Higgs boson in diffractivepp
collisions is drawing more and more attention as a clean channel to study the properties
of a light Higgs boson or even to discover it. The central exclusive reaction,pp→ pHp,
appears particularly promising.

7.4.3. A survey of the accessible diffractive/forward processes

The accessible physics is a function of the integrated luminosity. We assume standard LHC
optics with β∗

= 0.5 m unless stated otherwise. We recall that, in this case, the TOTEM
Roman Pots (RP) at 220 m from the CMS interaction point have coverage for 0.02< ξ < 0.2,
whereξ is the proton fractional momentum loss. Near-beam detectors at 420 m from the
interaction point, currently also being considered [254], would cover 0.002< ξ < 0.02.

Low-luminosity (∼ 1028–1030 cm−2 s−1) studies could profit from running with
β∗ > 0.5 m, where theξ coverage of the 220 m RPs would be wider and thet resolution
would improve because of the lower transverse momentum spread of the beam.

7.4.3.1. Inclusive single diffraction and double Pomeron exchange at low luminosity.At
modest instantaneous luminosities, up to 1032 cm−2 s−1, inclusive single diffractive (SD)
events,pp→ pX, as well as inclusive double-Pomeron exchange (DPE) events,pp→ pXp,
can be studied by requiring the presence of one or two rapidity gaps in the event. In the
ξ range given above, the scattered proton can be detected and the kinematics of the events
fully measured.

The inclusive SD and DPE cross sections, as well as theirMX dependence, even in the
absence of a hard scale, are important quantities to measure at the LHC. HereMX indicates
the mass of the systemX. These cross sections amount to approximately 15% and 1% of
the total proton-proton cross section, respectively; their energy dependence is a fundamental
parameter of (non-perturbative) QCD. In addition, since diffractive events constitute a major
fraction of the pile-up events, their measurement is mandatory to be able to properly simulate
and understand high-luminosity data, where, at instantaneous luminosities of 1034 cm−2s−1,
approximately 35 pile-up events are superimposed, on average, to any event.

7.4.3.2. SD and DPE production of dijets, vector bosons and heavy quarks.The study of SD
and DPE events in which the diffractively excited state includes high-ET jets, heavy quarks
or vector bosons opens up the possibility of accessing dPDFs and GPDs. The comparison of
the DPE and SD rates for these processes may also give information on the hard diffractive
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factorisation breaking at LHC (see Section7.4.2). A few examples of these processes are
given here.

Production of dijets. The measurement of the reactionpp→ pX j j ( j indicates a jet) has
been used for the first time by CDF to measure the diffractive structure function in antiproton-
proton collisions [255]. A similar measurement is possible at LHC with wider kinematic
coverage (CDF:ξ > 0.035) and larger minimum jetET. For ET > 45 GeV, of the order of
108 events per fb−1 can be expected.

Production of heavy quarks. Inclusive DPE production oft t pairs has been studied in the
case in which the final state contains one muon and four jets (i.e. with one top quark decaying
to b plus lepton and neutrino, and the other to three jets). The analysis required the detection
of both final-state protons. The expected number of events is of order 1− 100 for 10 fb−1,
depending on the theoretical model assumed.

SD and DPE production ofB-mesons has also been looked at, withB → J/ψX and
J/ψ → µ+µ−. Here the number of expected events is much larger, of the order of a few
events per 10 fb−1 in the DPE case and thousands in the SD case.

Inclusive DPE production of W bosons.Inclusive DPE production ofW bosons,pp→

pXW p, is also sensitive to the dPDFs of the proton and is a relatively abundant process that
can be studied at instantaneous luminosities where pile-up is small. In these conditions, the
requirement that two final state protons be measured in the 220 m RPs suppresses both the
QCD background and the inclusiveW production. Several thousand events withW → eν
or W → µν are expected, after cuts, for an integrated luminosity of 1 fb−1. This process,
in conjunction with SD production ofW bosons, can be used to study hard diffractive
factorisation breaking using the LHC data alone, as mentioned above.

7.4.3.3. SM and MSSM central exclusive Higgs production.As the delivered luminosity
reaches tens of fb−1, the central exclusive production process (DPE) becomes a tool to
search for new physics, delivering signal to background ratios of order 0.1–1 for Standard
Model (SM) Higgs production [256] and more than an order of magnitude larger for certain
supersymmetric (MSSM) scenarios.

By central exclusive, we refer to the processpp→ pφp, where there are large rapidity
gaps between the outgoing protons and the decay products ofφ. There are three primary
reasons why this process is attractive. Firstly, if the outgoing protons remain intact and
scatter through small angles, then, under some general assumptions, the central systemφ

is produced in theJZ = 0, C and P even state. Secondly, the mass of the central system can be
determined very accurately from a measurement of the transverse and longitudinal momentum
components of the outgoing protons alone. This means an accurate determination of the mass
irrespective of the decay mode of the centrally produced particle. Thirdly, the process delivers
excellent signal to background ratios, due to the combination of theJZ = 0 selection rules,
the mass resolution, and the simplicity of the event in the central detectors. An additional
attractive property of central exclusive production is its sensitivity to CP violating effects in
the couplings of the objectφ to gluons.

The left panel of Fig.7.14shows the cross section times the branching ratio for central
exclusive production of a Standard Model Higgs, withH → bb andH → W W, as a function
of the Higgs mass for different theoretical approaches. Thebb mode is particularly interesting
for masses close to the current exclusion limit. The right panel of Fig.7.14 shows the
acceptance assuming various combinations of RPs at 220 m and near-beam detectors at
420 m. Both protons can be detected in the 220 m stations only for Higgs masses larger
than 280 GeV/c2; this reflects theξ range for which the 220 m RPs have acceptance,
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Figure 7.14. Left: The cross section for the exclusive production of the Higgs boson as a function
of the Higgs boson mass forH → bb andH → W W. The different curves were obtained with the
generators Exhume1.3 [259], DPEMC2.4 [260] and EDDE1.2 [261]. Right: Acceptance for the
420 m detectors alone and for the combination of the 220 m and 420 m detectors as a function of
the Higgs boson mass.

0.02< ξ < 0.2 (the mass of the centrally produced Higgs is related to theξ via M2
H = ξ1ξ2s,

with ξ1, ξ2 the fractional momentum losses of the two protons). However, asymmetric events
with one proton at lowξ and another at largeξ can be detected by the combination of the
220 m and 420 m detectors (0.002< ξ < 0.02).

Central exclusive production is generally an attractive way of searching for any new
particles that couple strongly to glue. An example studied in [257] is the scenario in which the
gluino is the lightest supersymmetric particle. In such models, there should exist a spectrum of
gluino-gluino bound states which can be produced in the central exclusive channel. Likewise,
central exclusive production of radions, the fields introduced in the Randall–Sundrum model
of five-dimensional quantum gravity, has been studied [258].

H → bb. The analysis is based on the requirement of two back-to-back centralb-tagged jets
in addition to the detection of both final-state protons yielding a mass of the central system
consistent with that calculated from the protons alone. The event yield is very low, about 2–4
events per 30 fb−1 after all cuts, depending on the model. The non-resonant continuumb-jet
background is largely suppressed by theJZ = 0 rule. The residual background, mostly due to
dijet production (gg→ dijets) and diffractivegg→ bb production, is a function of the mass
resolution, which is about 1.6% for the ‘420 + 420’ combination and 5.6% for the ‘220 + 420’
combination (for MH = 120 GeV/c2). The number of expected background events is of
order 10 for 30 fb−1.

H → WW. In this case, the suppression of the background does not rely primarily on the
mass resolution of the RPs. There are three main categories ofW W events. Events in which
at least one of theW bosons decays to an electron or a muon are the simplest, and pass
the Level-1 trigger thanks to the high-pT final-state lepton. This holds also if one of theW
bosons decays into a tau, which subsequently decays leptonically. The four-jet mode occurs
approximately half of the time; here, however, the RP information is necessary already at
Level-1. The expected event yields range between 1 and 7 events for 30 fb−1, depending on
the mass. Irreducible backgrounds are small and controllable.
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MSSM Higgs. Double proton tagging is especially beneficial in the MSSM case. Theb-jet
channel is very important in the ‘intense coupling regime’ of MSSM (Mh ≈ MA ≈ MH ≈

100 GeV/c2) [262]: couplings of the Higgs togg, W W∗, Z Z∗ are strongly suppressed,
making the discovery challenging by conventional means. Rates for central exclusive
production of the two scalar (0+) MSSM Higgs bosons (h, H ) are more than a factor 10
larger than for the SM Higgs. The enhancement forH → bb is by orders of magnitude
in the Mh-max scenario forMH ≈ 180–250 GeV/c2; likewise for h → bb andh → ττ for
Mh ≈ 90–130 GeV/c2 [263]. In the smallαeff scenario,h → bb andh → ττ can be heavily
suppressed for large tanβ and for Mh ≈ 120 GeV/c2 [263], whereash → W W may be
enhanced by up to a factor 4 compared to the SM predictions. Also, the pseudo-scalar (0−)
Higgs boson (A) is practically not produced in the central exclusive channel, yielding a clean
separation of the scalar and pseudo-scalar Higgs bosons, impossible in conventional channels.
The good missing mass resolution allows to resolveh, H and, if enough statistics is available,
measure their widths. This makes central exclusive production a possible discovery channel.
Central exclusive production is also interesting in the ‘3-way mixing’ scenario of CP-violating
MSSM [264]: here the 3 neutral Higgs bosons are nearly degenerate, mix strongly and have
masses close to 120 GeV/c2.

Central exclusive production, with its good mass resolution via the scattered protons,
may allow disentangling the Higgs bosons by studying the production lineshape. Explicit
CP-violation in the Higgs sector causes an asymmetry in the azimuthal distributions of tagged
protons (via the interference of P-even and P-odd amplitudes) – a measurement unique at
the LHC [262, 265].

7.4.3.4. High-energy photon interactions.A significant fraction of events at the LHC
involves photon interactions at energies above the electroweak scale [266]. The protons
radiating the photon often survive the collision intact and are scattered at angles comparable
to the beam angular divergence. Detection of such events at the LHC will open up a
new field of high-energy photon physics, which is briefly outlined below. By requiring the
detection of one or two forward protons like in diffractive interactions, photon-photon and
photon-proton interactions can be selected. The photon fluxes, and the effective luminosities
of photon-photon and photon-proton collisions are well known [267, 268]. The average
proton energy loss is larger and the proton scattering angle smaller in photon exchanges
than for the diffractive case. This can be used to establish relative contributions of these
two processes.

Two-photon exclusive production of W and Z boson pairs.The cross section for the
production of W pairs via photon-photon interactions,pp→ ppW W, is slightly above
100 fb; in almost half of these events both forward protons are produced within the acceptance
of the TOTEM RPs. About 100 events per 10 fb−1 with leptonicW decays can be detected
in CMS. This allows a precise study of the gauge couplings, in particular of theγ γW W
coupling. The expected sensitivity to anomalous quartic gauge couplings (QGCs) will surpass
the LEP and Tevatron limits by orders of magnitude. A deviation from the Standard Model
predictions would also allow a clean detection of anomalousW W production as predicted
e.g. by A. White’s theory of the supercritical Pomeron [269]. Two-photon production ofZ
pairs,pp→ ppZ Z, is not allowed at the SM tree level, but yields similar sensitivities to the
anomalous QGCs in this channel.

Two-photon exclusive production of pairs of SUSY particles.The cross sections for
production of pairs of charginos, sleptons and charged Higgs bosons via photon-photon
fusion at the LHC decrease rapidly with the masses of these particles [269]. This limits the
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scope of SUSY searches to particle masses below 150–200 GeV/c2. However, the very clean
environment of this reaction makes it attractive compared to other production mechanisms;
the final state typically consists of two opposite-sign leptons and of missingpT. The main
background is due to the exclusive production ofW pairs discussed above.

Two-photon production of doubly charged Higgs bosons (appearing in GUTs) is strongly
enhanced, and leads to exclusive final states with two pairs of same-sign leptons.

Two-photon lepton pair production. Exclusive production of lepton pairs – a purely QED
process at low|t | – may serve for calibration of thepp luminosity; it may also be used for
calibration of the momentum measurement of the scattered proton. Thousands of exclusive
muon pairs are expected to be reconstructed in CMS for an integrated luminosity of 1fb−1.
The striking signature of extremely small muon acoplanarity angles of less than about 10 mrad
may be exploited already at the trigger level.

Single W and single top photoproduction.The cross section for singleW photoproduction,
pp→ pW j X, reaches almost 100 pb. This process can be therefore studied already at low
luminosity. It also provides a means to study rescattering effects [268]. At higher luminosities,
studies of high massW j states will be possible; forW j invariant masses above 1 TeV, tens
of events are expected to be detected in CMS (and tagged by TOTEM) per 10 fb−1. This will
allow to search for, as an example, an anomalous triple gauge couplingγW W. This process
is the main background in the search for anomalous photoproduction of single top.

Associated WH and top pair photoproduction. The associated photoproduction of
a SM Higgs boson and aW boson has a cross section of about 20 fb for Higgs
mass below 180 GeV/c2. About 50% of the forward protons are tagged by TOTEM,
and events with leptonicW decay can be triggered efficiently in CMS. The cross
section for photoproduction of top pairs is slightly above 1 pb. Top pair production
is the main background forW H production, and in the photoproduction case the
signal-to-background ratio for photoproduction ofW H pairs is superior to the one in
inclusive production.

7.4.3.5. Drell–Yan. The study of forward production of low mass Drell–Yan lepton pairs
at the LHC provides a unique opportunity to directly access low-x partons in the proton.
In this process, the lepton pair originates from the annihilation of a quark-anti-quark pair
whose fractional momenta,x1 and x2, are related to the dilepton mass,M , and rapidity,y,
through

M2
= sx1x2; x1,2 =

M
√

s
exp±y, (7.2)

with
√

s = 14 TeV, the centre-of-mass energy of the colliding protons. In order to access
low x, a large imbalance in fractional momenta is required, boosting the lepton pair to large
rapidities.

The CASTOR calorimeter will cover the pseudorapidity range 5.3< η < 6.6,
corresponding to Bjorken-x values down to 10−7. With CASTOR alone, it may be possible to
obtain a crude estimate of the dilepton mass. With the additional information provided by the
T2 tracker, one can enhance the signal to background ratio by requiring tracks in association to
the electromagnetic energy deposits. As T2 will measure both the azimuthal and polar angles
of the tracks, a much more accurate measurement of the opening angle (and therefore of the
dilepton mass) and a two-dimensional study inM2 andx will become possible.
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7.4.3.6. Validation of cosmic-ray generators.The correct simulation of the interaction of
primary cosmic rays in the PeV energy range with the atmosphere is a key tool in the
study of cosmic rays. Unfortunately, the available generators differ significantly in their
predictions for the energy flow, multiplicity, hadronic energy fraction etc., in particular at
high rapidities. These models can be tested at the LHC: a 100 PeV fixed-target collision in
air corresponds to the centre-of-mass energy of app collision at the LHC. Several generators
were used to simulate inelastic and diffractive collisions at CMS:QGSjet [271], sibyll [272],
DPMJet [273], neXus [271]. There are significant differences in the predictions, notably in
the region covered by CASTOR, T1 and T2. A measurement of these features with CASTOR,
T1 and T2 may thus be used to validate/tune these generators.

7.5. Physics with heavy ions

7.5.1. High-density QCD: heavy-ion physics

Quantum Chromodynamics (QCD) is the only existing quantum field theory within the
Standard Model, whose collective behaviour, phase diagram and phase transitions, are
accessible to study in the laboratory. High-energy nucleus-nucleus collisions offer the only
experimental means known so far to concentrate a significant amount of energy (O(10 TeV) at
the LHC) in a “large” volume (O(100 fm3) at thermalisation times ofτ0 ≈ 1fm/c), allowing
the study the many-body dynamics of strongly interacting matter. The programme of high-
energy heavy-ion physics addresses several key open questions of the strong interaction:

• Deconfinement and chiral symmetry restoration. Lattice QCD calculations predict a
new form of matter at energy densities aboveε ≈ 1 GeV/fm3 consisting of an extended
volume of deconfined and bare-mass quarks and gluons: the Quark Gluon Plasma
(QGP) [274]. The scrutiny of this new state of matter (equation-of-state, order of the
phase transition, . . . ) promises to shed light on fundamental questions such as the nature
of confinement, the mechanism of mass generation (chiral symmetry breaking, structure of
the QCD vacuum) and hadronisation, that still evade a thorough theoretical description due
to their highly non-perturbative nature.

• Non-linear parton evolution at small-x. At high energies, hadrons consist of a very dense
system of gluons with small (Bjorken) parton fractional momentax = pparton/phadron.
At low-x, the probability to emit an extra gluon is large∼ αSln(1/x) and non-linear
gluon-gluon fusion processes start to dominate the parton evolution in the hadronic wave
functions. Whereas at values ofx & 10−3, the parton evolution withQ2 (or ln(1/x)) is
described by the usual DGLAP (or BFKL) equations, at lower values ofx and around
Q2

s ∼3GeV2/c2, such a saturated configuration is theoretically described in terms of the
“Colour Glass Condensate” (CGC) picture [275]. Since the nonlinear growth of the gluon
density depends on the transverse size of the system, the effects of gluon saturation are
expected to set in earlier (at higherx) for heavy nuclei than for free nucleons.

In addition, the study of heavy-ion collisions has interesting connections to other research
areas such as:

• Early Universe cosmology.The quark-hadron phase transition took place some 10µs after
the Big-Bang and was the most important event taking place in the Universe between the
electro-weak (or SUSY) transition (τ ∼ 10−10 s) and Big Bang nucleosynthesis (BBN, at
τ ∼ 200 s). Depending on the order of the QCD phase transition, several cosmological
implications such as the formation of strangelets and cold dark-matter (WIMP) clumps or
baryon fluctuations leading to inhomogeneous nucleosynthesis, have been postulated [276].
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